Pop’Sciences répond à tous ceux qui ont soif de savoirs, de rencontres, d’expériences en lien avec les sciences.

EN SAVOIR PLUS

Faire face aux maladies de société

FFaire face aux maladies de société

Selon les données du 6e rapport du GIEC, le changement climatique est la plus grande menace pour la santé humaine. Maladies cardiovasculaires causées par les hausses des températures, maladies respiratoires liées à la pollution atmosphérique, maladies animales transmissibles à l’homme causées par l’effondrement de la biodiversité et l’agriculture intensive, ou encore problèmes de santé mentale, avec le développement de troubles anxieux et des traumatismes causés par les catastrophes naturelles.

Toutes ces maladies de société ont un trait commun : « Elles sont intrinsèquement liées aux nouveaux modes de vie de nos sociétés industrialisées. C’est un constat difficile, dont il ne faut pas se détourner », ont affirmé Marianne Chouteau et Adina Lazar, enseignantes chercheuses à l’INSA Lyon. À l’occasion du deuxième séminaire « Let’s look up! » en mai dernier, le collectif de chercheurs et d’enseignants-chercheurs de l’INSA Lyon et de l’Université Lyon 1 ont exploré cette thématique.

>> Le cas des zoonoses
Les dernières décennies ont montré une accélération dans l’émergence de zoonoses, ces maladies qui passent de l’animal à l’homme. Déjà identifié depuis le Néolithique, il est désormais connu que ce mécanisme de contamination peut être à l’œuvre dans différents cas : lors d’un contact direct avec un animal contaminé ; par l’intermédiaire de l’environnement (eau, sols) ; par l’intermédiaire d’un animal vecteur ; ou encore par la consommation d’aliments d’origine animale contaminés. C’est avec la présentation détaillée de cette pathologie bovine que débute la présentation de Thierry Baron1,chef de l’Unité Maladies Neurodégénératives de Lyon. Après des années de recherches sur les maladies à prions, il dirige aujourd’hui des études sur la maladie de Parkinson et autres variants. À travers ses travaux, il a pu montrer que le développement de cette maladie pouvait être favorisé par l’exposition à divers composés naturels ou artificiels comme les pesticides. « Les maladies à prions sont, dans la plupart des cas, considérées comme sporadiques, et leur cause est inconnue. Mais parfois des clusters de malades sont observés localement, il est alors possible d’aller rechercher les déterminants possibles de ces maladies par des enquêtes de terrain », explique le directeur de recherches de l’ANSES.

>> Environnement et technologie : les autres déterminants de la santé
Dans les années quatre-vingt, la crise de la vache folle avait sévi en Europe, causé notamment par la concentration d’animaux d’élevage. La crise avait entraîné des victimes humaines, des milliers de vaches abattues et une crise économique pour la filière bovine, conséquences d’un changement du procédé industriel de fabrication de farines animales. La baisse de la température de cuisson, qui visait à optimiser la qualité nutritive, limiter le coût de production, et réduire l’impact sur l’environnement et le personnel technique, a conduit à une crise de grande ampleur. Ainsi, dans le cas de la crise de la vache folle, la barrière de l’espèce a été franchie : le prion est passé du mouton à la vache, puis de la vache à l’homme via l’alimentation causant 28 décès recensés et confirmés. Intrinsèquement liée à l’organisation industrielle, cette crise a souligné les limites de la logique de performance de nos sociétés. « C’est une illustration de la nécessité de (…)

>> Lire la suite de l’article sur le site :

Insa lyon 

Santé : mieux comprendre les expositions environnementales / Soirée Pop’Sciences Mag

SSanté : mieux comprendre les expositions environnementales / Soirée Pop’Sciences Mag

Organisée à l’occasion du lancement du 14e numéro du magazine de l’Université de Lyon, Pop’Sciences Mag Santé[s], une vision globale, cette rencontre aura pour ambition de discuter des liens entre santé et environnement.

Nous ne sommes pas tous égaux face à la maladie. Qu’est-ce qui agit sur notre santé, en dehors des facteurs génétiques et comportementaux (activité physique, tabac, alcool…) ? Cette rencontre met en lumière un concept scientifique récent : l’exposome. Celui-ci fait référence aux différents facteurs environnementaux auxquels chaque individu est exposé tout au long de la vie et qui peuvent avoir un impact sur sa santé (alimentation, air, eau, bruit, pollutions, rayonnements, effets du changement climatique…) : comment les identifier, prendre conscience de leurs conséquences sur la santé et de quelle manière agir pour prévenir leurs effets, à l’échelle individuelle ou collective ?

La rencontre-débat proposera un éclairage sur ces questions grâce aux regards croisés de :


>> PROGRAMMATION

18h30 – Présentation du 14e numéro du Pop’Sciences Mag

18h45 – Rencontre – débat avec Fabrice Vavre et Béatrice Fervers

19h45 – Discussion avec le public

Un exemplaire du Pop’Sciences Mag #14 vous sera remis dans le cadre de cette rencontre.

Événement gratuit – Entrée libre, dans la limite des places disponibles.


Cet événement Pop’Sciences/Université de Lyon est organisé en collaboration avec la Bibliothèque municipale de la Part-Dieu.

Affiche soirée lancement Mag 14

©Pop’Sciences

 

Le Pop’Sciences Mag #14 « Santé[s], une vision globale » a été :

  • Réalisé grâce à la contribution de chercheurs issus des établissements et instituts suivants : Université Claude Bernard Lyon 1, Université Lumière Lyon 2, Université Jean Moulin Lyon 3, Université Jean Monnet Saint-Étienne, Université Grenoble-Alpes, École normale supérieure de Lyon (ENS de Lyon), Institut national des sciences appliquées Lyon (INSA Lyon), VetAgro Sup, École nationale des travaux publics de l’État (ENTPE), École nationale supérieure d’architecture de Lyon (ENSAL), Mines Saint-Étienne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Hospices civils de Lyon, Centre hospitalier universitaire de Saint-Étienne, Centre Léon Bérard.
  • Développé avec le soutien de la Métropole de Lyon, de la Région AURA, du projet LYSiERES²– Sciences avec et pour la société, du projet SHAPE-Med@Lyon et de la CASDEN.

SAiNTé@Lyon : un projet transdisciplinaire entre santé et environnement

SSAiNTé@Lyon : un projet transdisciplinaire entre santé et environnement

SAiNTé@Lyon : un projet transdisciplinaire qui questionne la relation entre santé et environnement

La pandémie de Covid-19, avec ses controverses médiatisées sur les moyens de prévention (le masque chirurgical, les vaccins), et les stratégies de santé publique adoptées (confinement général), a fait surgir dans le quotidien de la population la thématique de la santé, des épidémies, de ce que l’on était prêt à faire du respect de la vie individuelle pour surmonter la crise ou l’épidémie.

Stéphane Frioux, chercheur au Laboratoire de recherche historique Rhône-Alpes – LARHRA, ainsi que Galwen Roques, étudiant en histoire, nous parlent du projet SAiNTÉ@Lyon (pour Santé à Lyon et à Saint-Étienne) : ils travaillent sur le territoire Lyon/Saint-Étienne et questionnent la relation entre santé et environnement à travers la mise en perspective temporelle des problématiques actuelles de risques socio-sanitaires et socio-environnementaux.

Est-ce que vous pouvez me parler du projet en quelques mots ?

Stéphane Frioux : Le projet SAiNTé@Lyon, c’est un projet pluridisciplinaire avec une forte dimension sciences humaines et sociales, puisqu’il est porté par un historien, moi-même, une professeure de sciences de l’information et de la communication, Isabelle Garcin-Marou, et une géographe, Virginie Chasles.

À l’origine, il y avait la question de savoir d’où viennent les préoccupations actuelles sur la relation entre santé et environnement, notamment avec les pollutions : les pollutions urbaines actuelles ou héritées, et de comprendre dans quelle mesure il y avait une prévention vis-à-vis des risques associés à ces pollutions, prévention officielle, pratiquée par les habitants. Nous en sommes au début du projet et il s’est bien lancé avec une complémentarité entre les sites stéphanois et lyonnais.

Comment avez-vous rencontré vos co-porteuses ?

Stéphane Frioux : Isabelle Garcin-Marou, je la connaissais déjà. On s’était fréquenté au sein d’un des LabEx de l’Université de Lyon  « Intelligence des mondes urbains » – LabEx IMU – , et je savais qu’elle avait travaillé autour des risques industriels dans la Vallée de la chimie, notamment en menant des enquêtes sur la perception des risques et des pollutions dans les médias. Elle et moi, nous sommes allés à la journée de présentation de SHAPE-Med@lyon suite à un premier appel à manifestation d’intérêt. Nous avons appris qu’il y avait un projet en germe du côté de Saint-Étienne sur les territoires miniers et post-miniers portés par Virginie Chasles. On a pris contact avec elle et on a décidé de fusionner les deux projets pour avoir quelque chose de plus ambitieux, même si c’était des projets d’amorçage. Ensuite, nous avons fait la réponse à projet en se répartissant les moyens demandés.

[…]

>> Lire l’article complet

En 2022, le projet SHAPE-Med@Lyon (Structuring one Health Approach for Personnalized Medicine in Lyon), a été lauréat du Programme d’Investissement d’Avenir 4 « ExcellencES » de France 2030. 

SHAPE-Med@Lyon est avant tout une belle réussite collective qui fédère 12 partenaires : les universités Claude Bernard Lyon 1 (UCBL) et Lumière Lyon 2, les Hospices Civils de Lyon (HCL), le Centre Léon Bérard, le Centre hospitalier Le Vinatier, VetAgro Sup, CPE Lyon, avec les organismes nationaux de recherche Inserm, CNRS, INRAE, Inria et le Centre International de Recherche sur le Cancer de l’Organisation Mondiale de la Santé (OMS).

Life RECYCLO : vers une meilleure gestion des ressources en eau | Un dossier Pop’Sciences

LLife RECYCLO : vers une meilleure gestion des ressources en eau | Un dossier Pop’Sciences

Alors que le recyclage des eaux usées est encore peu présent en Europe et en France, la start-up lyonnaise TreeWater lance un projet de recyclage des eaux usées à destination des blanchisseries. Avec Pop’Sciences, suivez toute l’aventure du projet Life RECYCLO.

Article rédigé en septembre 2022

Dans le cadre du projet européen Life RECYCLO, la société TreeWater, une start-up lyonnaise issue du laboratoire DEEP de l’INSA Lyon, développe un procédé de traitement et de recyclage des eaux usées pour le secteur de la blanchisserie. L’objectif ? Proposer une meilleure gestion des ressources en eau et réduire le déversement de substances polluantes dans le milieu aquatique. Un projet qui prend place en France, en Espagne  et au Luxembourg de 2021 à 2024.

Partenaire du projet de septembre 2021 à février 2024, Pop’Sciences vous propose de suivre toutes les avancées, les péripéties et les réussites de ce projet au sein de ce dossier mis à jour au fil de l’eau.

>> Le dossier :

Alors que le recyclage des eaux usées est encore peu présent en Europe et en France, la start-up lyonnaise TreeWater lance un projet de recyclage des eaux usées à destination des blanchisseries. Partenaire du projet, Pop’Sciences vous explique : découvrez le projet Life RECYCLO.

Pop’Sciences vous emmène découvrir les coulisses de la fabrication du système de recyclage des eaux usées, un procédé innovant. Suivez pas à pas le développement de la technologie RECYCLO.

Dans le cadre de ce projet, s’est posée la question suivante : cela est-il acceptable, à la fois pour les gérants et les clients de blanchisseries, de laver du linge avec de l’eau recyclée ? Retrouvez dans cet article les résultats de l’enquête sur la perception sociale du projet.

Des enjeux de la protection de l’eau à la mise en place du premier prototype, l’aventure du projet Life RECYCLO a été filmée et a donnée lieu à un documentaire en 3 épisodes.

>> Retrouvez toutes les ressources du dossier :

 Life RECYCLO | Un dossier Pop’Sciences

Recycler les eaux usées de blanchisseries : le projet Life RECYCLO | #1 Dossier Pop’Sciences Life RECYCLO

RRecycler les eaux usées de blanchisseries : le projet Life RECYCLO | #1 Dossier Pop’Sciences Life RECYCLO

Alors que le recyclage des eaux usées est encore peu présent en Europe et en France, la start-up lyonnaise TreeWater lance un projet de recyclage des eaux usées à destination des blanchisseries. Partenaire du projet, Pop’Sciences vous explique.

Article rédigé en février 2022

42 millions de m3 par an, c’est la quantité d’eau utilisée dans le secteur de la blanchisserie en Europe. Un chiffre non-négligeable, d’autant plus dans un contexte de réchauffement climatique où cette ressource va être amenée à être réduite drastiquement. C’est pour tenter de répondre à ce problème que le projet Life RECYCLO a vu le jour. Lancé en septembre 2021 par la société TreeWater, il fait partie du programme LIFE de la Commission européenne, qui finance les initiatives dans les domaines de l’environnement et du climat. Il a pour objectif de mettre en place un système de traitement des eaux usées de blanchisseries pour les recycler et pouvoir ensuite les réutiliser.

Selon la Commission européenne, les pénuries d’eau vont être amenées à augmenter de 50 % en Europe d’ici 2030. En France, nous en consommons actuellement 148 litres par jour et par personne. Une fois utilisées, les eaux sont traitées puis rejetées dans le milieu naturel. Mais elles ne sont que très rarement recyclées. Dans le monde, la réutilisation des eaux usées est très hétérogène selon les pays. Ce sont généralement les états pour lesquels cette ressource est limitée qui utilisent davantage des procédés de recyclage. Mexico réemploie, par exemple, près de 100 % de ses eaux usées pour l’irrigation. En Israël, le taux de réutilisation atteint 80 %. Mais ces exemples ne sont pas majoritaires. En Europe, alors que l’Espagne et l’Italie réutilisent respectivement 8 et 14 % de leurs eaux, la France n’en réemploie que moins de 1 %. En France, comme dans le monde, le principal usage de ce recyclage est l’irrigation agricole.

Recycler les eaux de blanchisseries

On dénombre environ 11 000 blanchisseries en Europe. Leurs eaux usées finissent le plus généralement dans les réseaux d’assainissement publics et ne sont que très peu réutilisées. Le lavage du linge conduit à l’émission de micropolluants tels que les phtalates (DEHP, DEP…), les phénols, les métaux lourds, les solvants ou les surfactants. Et les stations d’épuration ne sont très souvent pas adaptées au traitement de ces molécules particulières, qui terminent alors leur trajet dans notre environnement. Or, même à faible concentration, ces polluants affectent directement le milieu aquatique, les écosystèmes et donc notre santé. Plusieurs de ces substances sont ainsi des perturbateurs endocriniens, cancérogènes et mutagènes.

Station d’épuration © Shutterstock

Le projet Life RECYCLO propose de traiter les micropolluants présents dans les eaux usées de blanchisserie afin de permettre leur réutilisation dans le processus de lavage du linge. Le procédé RECYCLO est un système d’oxydation avancée, qui associe le peroxyde d’hydrogène et les rayons ultraviolets. Ces derniers vont transformer le peroxyde d’hydrogène en radicaux hydroxyles : ce sont alors eux qui vont détruire les polluants. Les rayons UV désinfectent également l’eau en parallèle. Ce procédé a pour objectif de réduire la consommation d’eau potable des blanchisseries de 50 à 80 %, mais également d’éliminer 90 % des polluants rejetés par le lavage du linge. D’autres procédés de recyclage existent et sont développés en France et dans le monde. Celui de TreeWater présente notamment les avantages de ne produire que peu de résidus de traitement et de dégrader directement les polluants organiques, contrairement à d’autres technologies qui ne font que les enlever.

Des tests, des analyses et une enquête sociologique

Après une première expérimentation réussie dans une blanchisserie du Gard, la Blanchisserie Saint-Jean, ce système breveté poursuit son développement. Le but de ce projet est alors d’achever son industrialisation et de tester sa reproductibilité. Il sera ainsi mis en place dans deux autres blanchisseries : la Fundacio Mas Xirgu en Espagne et Klin SARL au Luxembourg. Le système de la Blanchisserie Saint-Jean sera, quant à lui, transformé en laboratoire in-situ pour préparer le procédé aux nouvelles pollutions émergentes, comme les micro et les nanoplastiques. TreeWater, issue du laboratoire DEEP de l’INSA Lyon, et le Catalan Institute for Water Research de Gérone vont alors réaliser des analyses pour étudier l’efficacité du procédé.

En parallèle de ces essais techniques, une enquête sociologique sera également menée auprès de blanchisseries et de leur clientèle pour évaluer leur perception de la réutilisation des eaux usées dans ce contexte. Cette enquête est alors conduite par Pop’Sciences, qui s’occupe également de la communication de ce projet, à l’interface entre sciences et société.

Le premier prototype sera mis en place à la fin de l’été 2022. Les deux autres prototypes seront installés au début de l’année 2023. Ils seront, ensuite, suivis et étudiés de très près. Les résultats de l’enquête sont, eux, prévus pour l’automne 2022. Un projet à suivre jusqu’en 2024 !

>> Pour suivre toute l’actualité du projet :

Site de Life RECYCLO

Vous souhaitez savoir comment fonctionne une machine à recycler l’eau : cliquez ici

PPour aller plus loin

Construire une machine à recycler l’eau : mode d’emploi | #2 Dossier Pop’Sciences Life RECYCLO

CConstruire une machine à recycler l’eau : mode d’emploi | #2 Dossier Pop’Sciences Life RECYCLO

Le projet Life RECYCLO a pour objectif de développer un procédé de recyclage des eaux usées. Partenaire du projet, Pop’Sciences vous emmène découvrir les coulisses de la fabrication de ce système.

Article rédigé en juin 2022

Dans le cadre du projet européen Life RECYCLO, la société TreeWater, une start-up lyonnaise issue du laboratoire DEEP de l’INSA Lyon, développe un procédé de traitement et de recyclage des eaux usées pour le secteur de la blanchisserie. L’objectif ? Proposer une meilleure gestion des ressources en eau et réduire le déversement de substances polluantes dans le milieu aquatique. Le procédé développé a pour but d’éliminer plus de 90 % des polluants. Ces eaux recyclées seront alors réutilisées par ces mêmes blanchisseries dans leur processus de nettoyage, avec un objectif d’économie de 50 à 80 % d’eau. Mais comment cela fonctionne-t-il exactement ? Comment fait-on pour recycler de l’eau ?

Le procédé RECYCLO se décompose en trois étapes : la coagulation-floculation, l’oxydation avancée et l’adsorption sur charbon actif. La seconde étape est la phase principale du processus : son principe est d’associer un composé chimique, le peroxyde d’hydrogène, et des rayons ultraviolets. Ce procédé doit être adapté à chaque blanchisserie selon ses effluents, c’est-à-dire ses eaux usées. Les ingénieurs de TreeWater font ainsi du sur-mesure pour mettre en place leur technique. Nous vous proposons de découvrir les trois étapes de ce recyclage au travers de la visite des laboratoires et installations de la start-up.

Du sur-mesure

Première étape de la recette : la coagulation-floculation. Pour la découvrir, nous nous sommes rendus dans le laboratoire de TreeWater, hébergé au laboratoire DEEP. Thibault Paulet, technicien recherche et développement, nous y accueille, entouré de béchers, pipettes et autres ustensiles. Et il nous explique en quoi consiste cette première étape : « La coagulation va permettre d’enlever tout ce qui n’est pas dissous dans l’eau, les matières en suspension. » Il s’agit ainsi d’une première phase de nettoyage de l’eau, qui est essentielle pour la suite. « Cela va rendre l’eau limpide et améliorer la transmission des rayonnements ultraviolets. Ce qui sera primordial pour l’étape suivante d’oxydation avancée à base de ces derniers », analyse Thibault Paulet.

Thibault Paulet est en train de déposer le coagulant dans un effluent de blanchisserie. / © S. Dizier

Pour mettre en place ce processus, il faut introduire un coagulant dans les effluents. Celui-ci va regrouper les molécules solides entre-elles. C’est alors à cette étape que les dosages doivent être faits au cas par cas. Tous les rejets d’eaux usées de blanchisseries ne contiennent pas les mêmes choses, et vont donc réagir différemment avec le coagulant. « Je dois faire des essais sur plusieurs concentrations, parce que si je ne mets pas assez de coagulant, cela ne va pas fonctionner, raconte Thibault Paulet. Mais si on en met trop, cela ne va pas coaguler non plus. Il faut donc trouver le juste milieu. » Le scientifique dépose donc précisément différentes quantités de coagulants dans plusieurs béchers remplis du même effluent. Le but est alors de déterminer quelle est la concentration idéale pour cet effluent précis. Plusieurs essais sont alors nécessaires pour trouver le bon dosage. Des agitateurs sont placés dans les béchers. Et c’est parti pour 200 rotations par minute pendant deux minutes. On voit alors déjà les particules apparaître.

Résultats de coagulation-floculation selon des concentrations de produits différentes (de gauche à droite : du moins au plus concentré). / © Thibault Paulet

Le floculant entre alors en jeu. Son but est de favoriser l’agrégation des molécules, telle une colle. Ce regroupement en amas de molécules rend ainsi la filtration plus aisée. Le technicien rajoute le floculant aux mélanges. Et après quelques tours de rotation supplémentaires, des nuages moutonneux de particules apparaissent au fond des béchers. Il ne reste plus qu’à les filtrer pour obtenir une eau limpide. Une fois le dosage idéal trouvé, cette eau va alors être soumise à des tests sur un prototype miniature du système d’oxydation avancée. Et si le test est concluant, on peut alors passer à la seconde étape de notre recyclage.

Peroxyde d’hydrogène et rayons ultraviolets

Pour cela direction Alixan, à quelques kilomètres de Valence, dans les locaux de TreeWater.  Dans un hangar en bois, les ingénieurs de la société s’affairent sur le pilote de leur procédé. Il s’agit de l’élément central de la deuxième phase du processus de recyclage : le système d’oxydation avancée. Le principe de cette technologie est d’associer le peroxyde d’hydrogène et les rayons ultraviolets. Ces derniers vont agir sur le peroxyde d’hydrogène, ce qui a alors pour effet de les transformer en radicaux hydroxyles. Ce sont alors ces radicaux qui vont détruire les polluants. Les rayons UV désinfectent également l’eau en parallèle.

Concrètement, le dispositif ressemble à un grand cylindre en métal dans lequel se trouvent les lampes UV et les effluents passent au milieu de celles-ci. Paul Moretti, chef de projet recherche et développement et coordinateur du projet Life RECYCLO, nous présente le pilote sur lequel sont faits les essais. « Ce n’est pas une installation finale, il s’agit d’une machine intermédiaire pour faire des essais à plus grande échelle qu’en laboratoire, nous explique-t-il. Cela permet d’identifier le rendement du traitement sur un effluent spécifique sur une période plus longue et avec de plus grands volumes. »

Le réacteur du système d’oxydation avancée du pilote comporte trois lampes UV. / © S. Dizier

Ce pilote comporte trois lampes UV. L’installation finale sera composée de V12, des réacteurs qui contiennent douze lampes et 75 litres d’eau. La quantité de réacteurs dépend alors de la quantité d’eau utilisée quotidiennement par les blanchisseries. Pour une blanchisserie de taille industrielle, comme la Blanchisserie Saint Jean, partenaire du projet, trois V12 seront nécessaires. Il faut alors compter sur des armoires électriques conséquentes pour alimenter ce processus. Vincent Fraisse, responsable conception et fabrication chez TreeWater, nous explique : « L’armoire pilote toute l’installation : les lampes UV, mais aussi tout ce qu’il y a autour comme les pompes, le moteur et l’automate qui pilote l’ensemble. » Tout l’appareillage nécessaire au recyclage – la coagulation/floculation, le système d’oxydation avancée et l’armoire électrique – sera ainsi placé dans un conteneur attenant à la blanchisserie ; une installation d’une taille non-négligeable.

L’armoire électrique nécessaire au fonctionnement de tout le processus de recyclage. / © S. Dizier

Après le passage dans le système d’oxydation avancée, vient alors l’étape finale de notre recette. Il s’agit de l’adsorption des impuretés sur charbon actif. Pour cela retour au laboratoire où les essais sont également effectués. « C’est le dernier traitement des effluents. L’eau va passer dans la colonne de charbon actif pour la débarrasser des toutes dernières impuretés », nous décrit Thibault Paulet. Après cette ultime étape, notre objectif est atteint : l’eau est recyclée. Elle peut alors être mélangée à 20 % d’eau potable et ainsi être réutilisée en toute sécurité pour le nettoyage du linge.

Trois prototypes à l’essai

Dans le cadre du projet Life RECYCLO, le premier prototype de cette technologie sera mis en place durant l’automne 2022 dans une blanchisserie espagnole près de Gérone. Deux autres prototypes seront installés en 2023 dans une blanchisserie luxembourgeoise et une blanchisserie française, la Blanchisserie Saint Jean (Gard). L’objectif est alors d’achever l’industrialisation de ce système breveté et de tester sa reproductibilité. Un projet à suivre jusqu’en 2024 !

Pour en découvrir davantage sur le projet Life RECYCLO, retrouvez le premier article du dossier Life RECYCLO de Pop’Sciences.

 

Réparer les plastiques avec des champs magnétiques pour augmenter leur durée de vie ? | The Conversation

RRéparer les plastiques avec des champs magnétiques pour augmenter leur durée de vie ? | The Conversation

En chargeant certains plastiques de particules magnétiques, il est possible de les chauffer à distance afin de les remodeler. Mathieu Salse/INSA Lyon, Fourni par l’auteur | ©Mathieu Salse/INSA Lyon

L’utilisation excessive des plastiques constitue un exemple frappant de la manière dont les matériaux peuvent devenir une source majeure de pollution. La sobriété matérielle, qui consiste à limiter la consommation de matériaux, constitue donc un levier majeur pour diminuer l’impact de nos sociétés sur l’environnement. Bien qu’il semble désormais utopique de se passer des plastiques, l’espoir réside néanmoins dans le fait qu’une grande partie d’entre eux, dits thermoplastiques, ont la faculté de se déformer ou de s’écouler lorsqu’ils sont chauffés.

Cette propriété permet de les remodeler, offrant ainsi la possibilité de les réparer et de les réutiliser directement, ce qui présente une alternative moins coûteuse qu’un recyclage chimique. Parmi les diverses méthodes qui existent pour chauffer et réparer les plastiques, le chauffage par induction magnétique constitue un moyen rapide et efficace d’échauffer localement la matière. Cette technique, notamment utilisée comme traitement contre certains cancers, peut être également employée pour réparer les plastiques permettant ainsi d’accroître leur temps de vie.

Les matériaux autocicatrisants

Une rapide rétrospective montre que la réparation des matériaux plastiques est un sujet qui passionne la communauté scientifique depuis quelques décennies. Ce sujet a connu un véritable « boom » en 2008 avec la découverte d’un nouveau type de matériau capable de s’autoréparer à température ambiante : les vitrimères. On parle alors d’autoréparation, d’autocicatrisation ou de self-healing en anglais. Bien que de nombreux progrès en chimie ont depuis lors permis de diversifier les solutions, les matériaux autoréparables ne sont pour autant pas véritablement sortis des laboratoires de recherche et peinent toujours, plus de 15 ans après, à trouver leur place dans l’industrie.

Si la raison principale de leur manque d’applicabilité est parfois à chercher au niveau de leur prix et de leur complexité chimique, une autre raison plus fondamentale réside dans l’incompatibilité entre capacité à s’autoréparer et rigidité élevée – la première nécessitant une grande mobilité moléculaire et la seconde de fortes liaisons entre les constituants de la matière. En outre, l’industrie du plastique et ses procédés de fabrication étant arrivés à maturation, c’est tout un écosystème qu’il faut repenser pour inclure la production d’une part significative de matériaux innovants.

Les matériaux guérissables sous champ magnétique

Contrairement au cas des matériaux autocicatrisants qui ne nécessitent aucune intervention extérieure, une stratégie alternative, appelée le stimulus-healing, consiste à apporter de l’énergie pour chauffer et réparer les matériaux thermoplastiques. En fonction du matériau et de l’application visée, le mode de chauffage peut prendre plusieurs formes telles qu’un transfert thermique (par contact direct ou via l’air environnant), une onde acoustique, une micro-onde, un laser ou un champ magnétique oscillant appliqué grâce à une bobine (électro-aimant).

Dans le dernier cas, l’opération consiste à intégrer dans le matériau plastique une faible quantité de particules magnétiques (1 à 5 % de son volume). Ces particules sont en effet capables de transformer le stimulus magnétique oscillant en chaleur au sein même de la matière, grâce à un phénomène appelé hyperthermie magnétique. Pour atteindre des températures de l’ordre de 150-200 °C, il est commun d’utiliser des champs magnétiques ayant une intensité de quelques milliteslas (l’équivalent d’un aimant de réfrigérateur) et une fréquence d’environ 500 kHz (contre 20 à 100 kHz pour une plaque induction standard).

Cette technologie a l’avantage de pouvoir être utilisée sur des matériaux dotés de propriétés mécaniques très différentes, ce qui permet de l’appliquer sur une large gamme de plastiques. En effet, elle a récemment été employée pour traiter des matériaux de grande consommation tels que le polypropylène (utilisé pour faire des pare-chocs de voiture) ou certains polyuréthanes souples (employés comme gaine d’isolation électrique).

Un autre avantage que présente cette technique est de pouvoir lisser une pièce rugueuse pour effacer ses défauts en surface. Cela est particulièrement utile pour des pièces imprimées en 3D dont la rugosité diminue sensiblement les performances mécaniques et rend l’aspect peu attractif.

Inducteur haute fréquence utilisé pour activer l’hyperthermie magnétique permettant le lissage et le renforcement d’une plaque de polypropylène imprimée en 3D. Le bras de l’inducteur est placé au dessus de la plaque de plastique, qui devient lisse et brillant, là où il est encore rainuré autour. | ©Guilhem Baeza/INSA Lyon

Vers le développement à grande échelle

Historiquement, les recherches menées sur l’hyperthermie magnétique ont une visée biomédicale. Cette technique, généralement combinée à la chimiothérapie ou la radiothérapie, est utilisée pour traiter certains types de cancer. Dans ce cas, des nanoparticules magnétiques biocompatibles sont injectées au patient, et la chaleur générée sous irradiation magnétique (+ 6 à 7 °C) tue sélectivement les cellules tumorales.

Cette technique offre la possibilité de chauffer sans contact ni besoin de faire parvenir la lumière, et fonctionne donc dans des matériaux opaques. Elle offre un grand contrôle, étant donné que la quantité de chaleur dégagée peut être contrôlée par les caractéristiques du champ magnétique, mais aussi par la quantité et la nature des particules stimulables. La localisation des particules permet également de chauffer sélectivement une zone désirée.

Dans le cas de matériaux composites basés sur des plastiques, ces avantages sont tout aussi utiles et posent de nouvelles questions scientifiques à résoudre afin d’améliorer le procédé de réparation.

Des limites qu’il reste à dépasser

Un exemple concerne quelles particules choisir parmi toute la variété de celles qui peuvent être utilisées pour convertir le champ magnétique en chaleur. Les chimistes peuvent jouer sur la composition (fer, cobalt, nickel…), la forme (sphère, cube, bâtonnet…) et la taille des particules magnétiques qui sont autant d’éléments impactant la capacité de chauffe des particules. Par ailleurs, la possibilité de fabriquer ces objets à grande échelle et de manière raisonnée est également un enjeu majeur : la société grenobloise Hymag’in, avec qui nous collaborons, développe par exemple des particules de magnétite issues de déchets de la sidérurgie.

D’autres aspects concernent davantage les physiciens, par exemple les questions liées aux mouvements des particules soumises au champ magnétique. D’une part, les particules ont tendance à se regrouper et à s’organiser en formant des chaînes, ce qui soulève des interrogations sur la réversibilité et l’utilisation répétée de cette technique. Sous l’effet du champ magnétique, les particules se mettent aussi à tourner sur elle-même, ce qui engendre un dégagement de chaleur supplémentaire par friction, dépendant du milieu environnant. Il est nécessaire de quantifier cet effet pour ne pas surchauffer les pièces, ce qui entraînerait leur dégradation.

L’aspect noir des matériaux (lié aux particules magnétiques) rend aussi plus difficile leur utilisation comme pièces visibles, notamment dans l’industrie automobile où la cicatrisation de rayures superficielles sur des pièces colorées représente un réel intérêt commercial. Mais il est aussi possible de réparer en moins d’une minute des caoutchoucs, typiquement des semelles de chaussures ou des joints d’étanchéité, ou même des plastiques durs présents dans des articles de voyage, de sport, ou dans des packagings rigides en tout genre. Finalement, la diffusion des technologies liées à l’hyperthermie magnétique nécessitera l’appui d’industries innovantes, capables d’identifier des applications de niche pour passer de concepts généraux à des produits de haute valeur ajoutée.

Le projet MANIOC est soutenu par l’Agence nationale de la recherche (ANR), qui finance en France la recherche sur projets. Elle a pour mission de soutenir et de promouvoir le développement de recherches fondamentales et finalisées dans toutes les disciplines, et de renforcer le dialogue entre science et société. Pour en savoir plus, consultez le site de l’ANR.The Conversation

Auteurs :

Guilhem P Baeza, Maître de conférences habilité à diriger les recherches en physique des polymères, INSA Lyon – Université de Lyon ;

Laura Ea, Doctorante en Physique des polymères, INSA Lyon – Université de Lyon ;

Mathieu Salse, Doctorant en sciences des matériaux polymères et composites, INSA Lyon – Université de Lyon ;

Simon Fritz, Doctorant en Physique des Polymères, INSA Lyon – Université de Lyon

Cet article est republié sous licence Creative Commons.

>> Lire l’article original sur le site :

The Conversation

Transformer les plastiques recyclés en appareillages orthopédiques pour les populations vulnérables

TTransformer les plastiques recyclés en appareillages orthopédiques pour les populations vulnérables

D’après l’OMS, seulement 5 à 15 % des personnes ayant besoin d’un appareil orthopédique y ont accès dans les pays à faibles revenus ou en contexte de guerre. Pour pallier ce constat, Handicap International a intégré l’impression 3D sur ses territoires d’intervention depuis 2017. Aujourd’hui, l’organisation non gouvernementale se voit confrontée à des problématiques logistiques coûteuses, liées à l’importation de la matière première depuis l’Europe. Et s’il était désormais possible de fabriquer des appareillages orthopédiques à base de plastiques recyclés, trouvés localement ?

Au sein de l’INSA Lyon, Valentine Delbruel, ingénieure INSA et doctorante, travaille sur l’optimisation de la composition d’un plastique recyclé, qui pourrait convenir à la fabrication additive d’orthèses : une façon de lutter contre la pollution plastique tout en rendant plus accessibles les solutions orthopédiques. Réalisés en collaboration avec Handicap International et trois laboratoires de l’INSA Lyon (MatéIS, IMP et LaMCoS), les travaux de la doctorante serviront aux équipes terrain d’Handicap International.  

L’impression 3D : une innovation pratique mais une logistique difficile
Traditionnellement réalisés par thermoformage, les appareillages orthopédiques relèvent d’un procédé de fabrication long et coûteux. Dans les zones où l’accès aux centres de soin est déjà difficile, les aller-retours nécessaires aux ajustements et le temps de rééducation sont des freins supplémentaires, rallongeant la procédure de soin de plusieurs semaines pour une prothèse. Depuis 2017, Handicap International utilise l’impression 3D pour pallier ce problème. Les fabrications sont facilitées, plus rapides et personnalisables à chaque patient. « L’impression 3D a changé la façon de prendre les mensurations des patients car elles peuvent être prises à distance grâce à un scanner 3D », explique Valentine Delbruel. « Seulement, ce type de fabrication nécessite des filaments composés de plastique qui sont actuellement fabriqués en Europe. Cela pose des problèmes logistiques, notamment aux niveaux des frontières. En constatant cette problématique rencontrée par ses équipes, Handicap International s’est interrogé : est-il possible de continuer à faire de l’impression 3D, avec des matières plastiques locales, si possible recyclées ? »

LIRE LA SUITE DE L’ARTICLE

Résistances aux traitements : la recherche en quête de solutions | Un dossier Pop’Sciences et CNRS

RRésistances aux traitements : la recherche en quête de solutions | Un dossier Pop’Sciences et CNRS

En dépit des considérables avancées du domaine biomédical, les bactéries résistent et persistent à déjouer les méthodes thérapeutiques les plus avancées. Si la communauté scientifique continue d’étudier les mécanismes biochimiques de cette antibiorésistance, le champ de la recherche s’étend également aux sciences humaines et sociales et notamment à l’étude des conditions socio-écologiques dans lesquelles elle se développe. Une approche systémique qui ouvre la voie à de nouvelles stratégies thérapeutiques ainsi qu’à une meilleure  prévention.

En partenariat avec le CNRS, Pop’Sciences vous propose un tour d’horizon pluridisciplinaire des recherches qui participent à endiguer la crise sanitaire mondiale de l’antibiorésistance.

L’art de résister

Tous les micro-organismes sont dotés d’une capacité intrinsèque à naturellement s’adapter à leur environnement. Cette fonctionnalité permet aux plus virulents d’entre eux d’infecter massivement les populations humaines, et les nombreuses pandémies qui jalonnent notre histoire en sont les sombres témoignages. Les 25 millions de morts de la peste noire du 16e siècle, ou encore les 40 à 50 millions de personnes que la grippe espagnole a emportées à la fin de la Première Guerre mondiale, comptent parmi les nombreuses victimes de cet « art de résister » des bactéries et des virus.

Le premier antibiotique, la Pénicilline G,  a été découvert à la fin des années 1920 par Alexander Fleming, révolutionnant durablement la médecine et permettant de sauver de nombreuses vies grâce à leur capacité à inhiber la croissance des bactéries ou à les détruire. Dès le départ, cependant, le biologiste écossais  avertissait que les micro-organismes s’adapteraient inévitablement à ce type de molécules si elles étaient utilisées de façon inappropriée : « cela aboutirait à ce que, au lieu d’éliminer l’infection, on apprenne aux microbes à résister à la pénicilline et à ce que ces microbes soient transmis d’un individu à l’autre, jusqu’à ce qu’ils en atteignent un chez qui ils provoqueraient une pneumonie ou une septicémie que la pénicilline ne pourrait guérir. »

Il ne pensait sans doute pas si bien dire, puisque dès les années 1940, les premières bactéries résistantes à ces traitements novateurs étaient identifiées. L’antibiorésistance était alors déjà née, fruit de la fulgurante capacité d’adaptation des bactéries aux stress extérieurs et de la sélection progressive des plus résistantes d’entre elles. Ce phénomène a été en grande partie dopé par l’utilisation excessive et préventive d’antibiotiques chez les humains et les animaux d’élevages intensifs.

Au fil des années, l’antibiorésistance s’est ainsi propagée de façon continue dans le monde entier, au point que certaines bactéries développent désormais des résistances simultanées à différentes familles d’antibiotiques.

Une crise mondiale à bas bruit

L’Organisation mondiale de la santé (OMS) a lancé en 2015 un système mondial de surveillance de la résistance et de l’utilisation des antimicrobiens (GLASS), qui vise à standardiser la collecte et l’analyse des données épidémiologiques à l’échelle du globe. Le dernier rapport qui a été publié dans ce contexte, concerne près des 3⁄4 de la population mondiale et fait apparaître des niveaux de résistance à certains antibiotiques supérieurs à 50 % pour des bactéries telles que Klebsiella pneumoniae (entérobactérie qui peut provoquer pneumonies, septicémies, ou des infections urinaires), ou encore Neisseria gonorrhoeae (une maladie sexuellement transmissible courante).

© Morgane Velten / Cliquez sur l’illustration pour l’agrandir.

En dépit de campagnes de prévention massives (qui ne se souvient pas du martèlement « Les antibiotiques, c’est pas automatique » ?), ou d’autres mesures plus drastiques comme la récente interdiction européenne des usages préventifs en élevage, la résistance aux antibiotiques gagne irrémédiablement en vigueur.

Des infections bactériennes courantes deviennent de plus en plus difficiles à soigner, comme c’est le cas pour la tuberculose ou la salmonellose. Les traitements nécessitent alors des doses plus élevées sur une durée plus longue, ce qui augmente les risques d’effets secondaires chez les personnes malades. Préoccupée, l’OMS prévient que sans mesures d’urgence, « nous entrerons bientôt dans une ère post-antibiotique dans laquelle des infections courantes et de petites blessures seront à nouveau mortelles ».

En plus d’être inquiétante l’antibiorésistance est, en outre, une menace silencieuse et invisible. Elle implique en effet des pathogènes microscopiques – les bactéries – qui s’adaptent aux traitements avec autant de vélocité que de discrétion. La crise sanitaire qui en résulte est également plus difficile à concevoir et à identifier que pour une épidémie « classique » comme la Covid-19. Pourtant, en l’absence d’une inversion de tendance, l’antibiorésistance pourrait être associée aux décès de plus de 10 millions de personnes par an d’ici 2050 (OMS). C’est davantage que le nombre de décès causés par le cancer.

À menace globale, réponse globale

Pour être combattue, l’antibiorésistance exige désormais un investissement de l’ensemble des champs scientifiques ainsi qu’une approche systémique et combinée de la santé humaine, animale et environnementale.

Si les chimistes et les biologistes travaillent toujours d’arrache-pied à décrypter les mécanismes internes de résistance des bactéries et adapter les traitements en conséquence, il convient d’associer ces recherches avec celles menées en sciences humaines et sociales. L’antibiorésistance est un phénomène complexe qui, pour être combattu, requiert d’étudier simultanément les contextes microbiologiques, environnementaux, sociaux et écologiques dans lesquels il se développe.

C’est en adoptant une posture holistique, et en combinant les approches fondamentales, cliniques et sociales, que les scientifiques ouvrent la voie à des stratégies de prévention plus efficaces, des traitements mieux ciblés et de nouvelles thérapies. C’est également l’occasion de repenser  notre rapport aux soins et plus largement notre vision de la santé, à la lumière de l’approche intégrée “One Health” (Une seule santé).

—————————————————————

[1] Le niveau de résistance aux antibiotiques d’une bactérie est mesuré (en %) par un test de sensibilité : l’antibiogramme. Il consiste à exposer la bactérie à différents antibiotiques à des concentrations différentes pour déterminer la concentration minimale inhibitrice (CMI), c’est-à-dire la concentration d’antibiotique qui empêche la croissance de la bactérie.

 

lles RESSOURCES du dossier

Dans ce dossier, nous vous invitons à découvrir les travaux de scientifiques lyonnais, engagés à différents niveaux pour mieux répondre à la crise de l’antibiorésistance.

 

  • #1 : La résistance aux antibiotiques : une problématique environnementale ? Auteure : Amandine ChauviatPublié le 4 janvier 2023
    Comment expliquer que des bactéries, non exposées aux antibiotiques, puissent malgré tout développer des résistances à ces traitements ?

> Lire l’article

Pour aller plus loin :

À l’occasion d’une interview, Amandine Chauviat, doctorante en écologie microbienne, présente son parcours, son sujet de thèse, ses motivations et ses envies…> ÉCOUTER LE PODCAST

  • #2 : Antibiorésistance : comment éviter une crise mondiale ? – Publié le 23 mai 2023
    Si aucune action n’est prise, des millions de décès pourraient, chaque année, être imputés à des maladies causées par des bactéries résistantes aux antibiotiques d’ici 2050. Pour y remédier, des chercheurs ambitionnent de décrypter certains mécanismes de résistance encore énigmatiques, tandis que d’autres préparent le terrain pour de nouvelles stratégies de ciblage de ces médicaments.

> Lire l’article

  • #3 : Un bon en avant vers des médicaments plus performants – Publié le 23 mai 2023 
    Après dix années de travaux, un consortium de chercheurs est en passe de parfaire la compréhension des cibles médicamenteuses, ouvrant la voie à l’amélioration de nombreux traitements.

> Lire l’article

  • #4 : Un espoir pour éradiquer la Brucellose – Publié le 23 mai 2023
    De récentes recherches ont permis d’identifier une série de gènes impliqués dans la propagation de la Brucellose, maladie animale transmissible à l’humain et répandue sur l’ensemble de la planète. L’horizon se dégage pour le développement de traitements plus performants et susceptibles de contourner les mécanismes sophistiqués de défense de la bactérie.

> Lire l’article

  • #5 : Existe-t-il un lien entre la pollution aux métaux lourds et la résistance aux antibiotiques ? – Publié le 23 mai 2023
    Comprendre l’origine et l’évolution de la relation entre les métaux lourds et la résistance aux antibiotiques implique de retourner avant la période industrielle, depuis laquelle des métaux et des antibiotiques sont rejetés dans l’environnement.

> Écouter le podcast

  • #6 : Médicaments, biocides et nappes phréatiquesAuteur : Dir. Communication INSAPublié le 19 janvier 2023
    Jusqu’où peuvent s’infiltrer les molécules pharmaceutiques des médicaments que nous ingérons ? Depuis plusieurs années, les pouvoirs publics et la communauté scientifique s’interrogent sur la présence de résidus de médicaments dans l’eau et, a fortiori, dans les nappes souterraines.

> Lire l’article

  • #7 : « L’antibiorésistance est une conséquence du rapport dévoyé qu’entretient notre espèce avec le reste du vivant » – Publié le 23 mai 2023
    Claire Harpet, anthropologue, étudie les relations qu’entretiennent les sociétés humaines avec le vivant et s’intéresse particulièrement à la résistance aux antibiotiques comme un fait social total.
    > Lire l’interview

—————————————————————

mmerci !

Ce dossier a été réalisé grâce à la collaboration de différents chercheur.e.s en sciences de l’Université de Lyon. Nous les remercions pour le temps qu’ils nous accordé.

  • Ahcène Boumedjel, professeur de chimie organique à la Faculté de Pharmacie de l’Université Grenoble Alpes et membre du Laboratoire des Radiopharmaceutiques Bioclinique (Université Grenoble Alpes, Inserm)
  • Amandine Chauviat, doctorante au laboratoire d’Écologie Microbienne (CNRS, Université Claude Bernard Lyon 1, INRAE)
  • Pierre Falson, directeur de recherche CNRS au laboratoire Microbiologie moléculaire et biochimie structurale (CNRS, Université Claude Bernard Lyon 1)
  • Christophe Greangeasse, directeur du laboratoire Microbiologie moléculaire et biochimie structurale (CNRS, Université Claude Bernard Lyon 1)
  • Claire Harpet, ingénieure de recherche au laboratoire Environnement, Ville et Société (CNRS, ENTPE, Lyon Lumière Lyon 2, Université Jean Moulin Lyon 3 Jean Moulin, ENSAL, ENS de Lyon, Université Jean Monnet)
  • Catherine Larose, chargée de recherche au laboratoire Ampère (CNRS, INSA de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1)
  • Cédric Orelle, directeur de recherche CNRS au laboratoire Microbiologie moléculaire et biochimie structurale (CNRS, Université Claude Bernard Lyon 1)
  • Noémie Pernin, doctorante au laboratoire Déchets, Eaux, Environnement, Pollutions (INSA Lyon)
  • Suzana Salcedo, directrice de recherche INSERM au laboratoire Microbiologie moléculaire et biochimie structurale (CNRS, Université Claude Bernard Lyon 1)

—————————————————————

ppour aller plus loin :

Existe-t-il un lien entre la pollution aux métaux lourds et la résistance aux antibiotiques ? | #5

EExiste-t-il un lien entre la pollution aux métaux lourds et la résistance aux antibiotiques ? | #5

Ressource #5 du dossier Pop’Sciences – CNRS : « Résistance aux traitements : la recherche en quête de solutions »
CHRONIQUE RADIO

Dans le cadre du projet Paleo-MARE, Catherine Larose, chargée de recherche CNRS au laboratoire Ampère, étudie le rôle de la pollution aux métaux lourds dans la propagation de la résistance aux antibiotiques.

© Vincent Moncorgé

Les gènes de résistance : un long processus d’évolution

La résistance aux antibiotiques existe depuis des millions, voire peut-être des milliards d’années. Les antibiotiques sont produits par les micro-organismes comme moyen de défense pour éliminer d’autres organismes : lors de la compétition pour l’accès aux ressources par exemple. S’ils produisent des antibiotiques, ils ont également besoin de développer des gènes de résistances aux antibiotiques pour se protéger. C’est un long processus de sélection évolutive.

Parallèlement, en libérant des métaux lourds dans l’environnement et en altérant les flux géochimiques, les humains ont perturbé l’équilibre naturel à l’échelle planétaire. Les micro-organismes, très vulnérables aux métaux lourds ont aussi développé des gènes de résistance spécifiques.

La présence simultanée de gènes de résistance aux métaux lourds et de gènes de résistance aux antibiotiques dans les génomes microbiens suggère une co-sélection.

Comprendre l’origine et l’évolution de la relation entre les métaux lourds et la résistance aux antibiotiques

Le projet Paleo-MARE consiste à comprendre l’origine et l’évolution de cette relation. Ceci implique de retourner avant la période industrielle, depuis laquelle des métaux et des antibiotiques sont rejetés dans l’environnement. Pour ce faire, Catherine Larose s’appuiera sur l’analyse de carottes glaciaires qui permettront d’étudier, grâce aux éléments qu’elles renferment, des environnements remontant à des milliers d’années.

>>> Catherine Larose est l’invitée de la chronique scientifique « Dis, pourquoi ? » du mois d’avril.
Écoutez son passage radio  en ligne.