Pop’Sciences répond à tous ceux qui ont soif de savoirs, de rencontres, d’expériences en lien avec les sciences.

EN SAVOIR PLUS

L’Université pour tous ! | Cycle de conférences

LL’Université pour tous ! | Cycle de conférences

L’Université Jean Monnet – UJM – propose un programme de conférences qui répond à la mission d’ouverture des savoirs vers la société qui est celle de l’université et qui reflète les grands champs disciplinaires de celle-ci. L’objectif est d’enrichir la culture générale et scientifique de chacun, mais aussi d’inviter à la réflexion sur de grands sujets de société. 

Les conférences sont assurées par des enseignants et chercheurs de l’Université Jean Monnet qui ont à cœur de partager les connaissances issues de leur recherche ou de leur domaine de spécialité. Elles s’adressent à tous les publics, sans condition d’âge ou de niveau d’études.

>> Devenir adhérent : cliquez ici

>> Programmes 2024-2025 :

Un cycle de 30 conférences sur 5 grands thèmes :  Arts et Littératures / Histoire, Philosophie, Patrimoine / Débats de Société / Sciences / Santé, Médecine.

Jours et horaires : Les vendredis de 14h30 à 16h30 du 4 octobre 2024 au 4 juillet 2025 (hors vacances scolaires).

Un cycle de 15 conférences sur 4 grands thèmes  : Arts et Littératures / Histoire, Philosophie, Patrimoine / Débats de Société / Santé, Médecine.

Jours et horaires : les jeudis de 14h à 16h du 3 octobre 2024 au 26 juin 2025 (hors vacances scolaires).

>> Pour plus d’information, rendez-vous sur le site : 

UJM

Soigner les cancers grâce à la médecine prédictive

SSoigner les cancers grâce à la médecine prédictive

Dans le cas de cancers, les prédictions cliniques pourraient être améliorées grâce à des modèles d’intelligence artificielle. Loïc Verlingue, chercheur et médecin au Centre Léon Bérard, ainsi que son équipe nous parlent du projet SMAD-CC (pour SMArt Data for improved machine learning in Cancer Care) : ils travaillent sur les données intelligentes dans le but d’améliorer l’apprentissage automatique en cancérologie.

L’équipe de SMAD-CC est installée dans une petite maison de ville attenante au Centre Léon Bérard à Lyon. Loïc Verlingue, Dounya Bourhani et Paul Minchella se sont prêté.es au jeu du questions/réponses dans une ambiance décontractée.

Est-ce que vous pouvez nous parler du projet en quelques mots ?
Paul Michella : « Notre problématique consiste à intégrer des multi-données dans nos modèles pour aider à améliorer nos objectifs cliniques. Peut-on améliorer la qualité de vie des patients en adaptant les traitements grâce aux outils d’intelligence artificielle ?

Loïc Verlingue : « L’objectif du projet est de montrer qu’en utilisant plus de données de diverses natures, on améliore les prédictions cliniques à partir de modèles d’intelligence artificielle. Les différents types de données sont entre-autres :

  • textuelles (narratives) donc les comptes rendus de consultation que les soignants génèrent.
  • structurées qui peuvent être soit cliniques (des informations cliniques structurées) soit biologiques (des prises de sang, par exemple) ;
  • moléculaires sur des biopsies et sur le plasma issu du séquençage des cancers de nos patients (données spécifiques à l’oncologie) ;
  • d’imageries comme les scanners ou les lames anatomopathologiques, ce qui est abordé par d’autres projets du Centre Léon Bérard.

On a une belle base de données moléculaires, avec à peu près 6000 patients qui ont été séquencés dans l’essai ProfilLER, c’est un essai du Centre Léon Bérard. Mais par rapport aux 140 000 patients dont on a les données textuelles, on se rend compte qu’il y a un différentiel.

Lire l’article complet

En 2022, le projet SHAPE-Med@Lyon (Structuring one Health Approach for Personnalized Medicine in Lyon), a été lauréat du Programme d’Investissement d’Avenir 4 « ExcellencES » de France 2030. 

SHAPE-Med@Lyon est avant tout une belle réussite collective qui fédère 12 partenaires : les universités Claude Bernard Lyon 1 (UCBL) et Lumière Lyon 2, les Hospices Civils de Lyon (HCL), le Centre Léon Bérard, le Centre hospitalier Le Vinatier, VetAgro Sup, CPE Lyon, avec les organismes nationaux de recherche Inserm, CNRS, INRAE, Inria et le Centre International de Recherche sur le Cancer de l’Organisation Mondiale de la Santé (OMS).

SHAPE-Med@Lyon vous propose ses « Inter-Med@Lyon » : des échanges informels avec les chercheurs-euses de ses projets lauréats. Ce mois-ci, l’Inter-Med est consacré au projet SMAD-CC porté par Loïc Verlingue, chercheur au Centre Léon Bérard et Guillaume Metzler du laboratoire ERIC.

 

Entre arts et médecine

EEntre arts et médecine

Médecine, architecture, sciences, arts… Depuis des siècles, l’hôpital apporte des soins à toutes et à tous, et contribue à façonner la ville et son paysage comme à développer les sciences.

>> Dates des visites :

  • Le Grand Hôtel-Dieu et la Chapelle, entre arts et médecine : samedi 6 avril, samedi 4 mai, samedi 29 juin >> Réserver
  • Du Grand Hôtel-Dieu à l’Université : médecine et sciences dans la ville : samedi 20 avril 2024, samedi 18 mai, samedi 15 juin 2024 >> Réserver

Pour en savoir plus :

Patrimoine hospitalier des HCL

Épidémies, prendre soin du vivant

ÉÉpidémies, prendre soin du vivant

Alors que nous venons de traverser collectivement la pandémie de la COVID-19, quelle mémoire conservons-nous des épidémies du passé et comment nous préparer à celles à venir ?

Depuis des millénaires, les épidémies touchent les sociétés humaines mais aussi les autres espèces animales, sur tous les continents. En s’appuyant sur des collections de médecine, d’ethnographie, des spécimens d’histoire naturelle ou encore des œuvres contemporaines, l’exposition nous invite à envisager les épidémies comme un phénomène non seulement biologique mais également social, dans un monde où santé humaine, santé animale et santé environnementale sont liées.

Une exposition du musée des Confluences d’après un concept original du National Museum of Natural History, Smithsonian Institution de Washington

Plus d’informations sur le site du :

MUSÉE DES CONFLUENCES

Journée thématique : Épidémies, décrypter pour avancer

JJournée thématique : Épidémies, décrypter pour avancer

Si elles accompagnent les espèces animales depuis toujours, les récentes épidémies et notamment celle de coronavirus SRAS-CoV-2 ont replacé les maladies et les virus au cœur de notre société. Une journée pour parler sereinement des épidémies d’hier, d’aujourd’hui… et de demain.

En écho à l’exposition Épidémies, prendre soin du vivant.

>> Au programme le 25 mai :

  • À 14h, atelier « Viral » en réalité virtuelle
  • À 15h, projection de Pandémies de Sophie Bensadoun
  • À 16h, table ronde autour de la question : « Comment les épidémies transforment nos sociétés ? »

Plus d’informations sur le site du :

MUSÉE DES CONFLUENCES

Lutter pour avorter ?

LLutter pour avorter ?

Les mouvements pour la liberté de l’avortement et de la contraception – MLAC – ou l’histoire d’un combat qui a changé la société

Le livre de Lucile Ruault retrace la sociohistoire des mouvements pour la liberté de l’avortement et de la contraception (MLAC) dits «dissidents» de 1972 à 1984, ayant poursuivi la pratique de l’avortement entre femmes après la loi Veil en 1975.

Le film de Blandine Lenoir avec Laure Calamy suit le parcours d’Annie, ouvrière et mère de deux enfants, accueillie par ce mouvement unique fondé sur l’aide concrète aux femmes et le partage des savoirs. Elle va trouver dans la bataille pour l’adoption de la loi sur l’avortement un nouveau sens à sa vie.

« Mon histoire c’est un petit peu l’histoire de tout le monde. J’avais avorté une fois dans un truc dégueulasse, chez une concierge infecte, pour 50000 balles il y a 14 ans de ça. Il n’y avait pas la pilule, et 6 mois après je me suis retrouvée enceinte. »

Hélène, dans Le spéculum, la canule et le miroir, de Lucile Ruault, p. 45

>> Au programme :

  • 18H30 – DÉBAT

Avec la sociologue Lucile Ruault, auteure de l’ouvrage Le spéculum, la canule et le miroir. Avorter au MLAC, une histoire entre féminisme et médecine.

En la présence exceptionnelle de la cinéaste Blandine Lenoir.

Animé par Vanina Mozziconacci, maîtresse de conférences en philosophie à l’université Paul Valéry de Montpellier, codirectrice de la collection perspectives genre.

Avec la participation du Planning Familial du Rhône (69).

 

  • 20H – PROJECTION

Du film Annie Colère, lauréat du Prix du film de fiction historique aux Rendez-vous de l’histoire de Blois (2023).

Lucile Ruault a été conseillère historique sur le film de Blandine Lenoir Annie Colère.

Pour en savoir plus :

Festival 50 ans d’action du mlac à aujourd’hui

Diagnostic 2.0 : quand l’Intelligence Artificielle intervient | Un dossier Pop’Sciences

DDiagnostic 2.0 : quand l’Intelligence Artificielle intervient | Un dossier Pop’Sciences

Pour son dossier consacré aux nouvelles applications de l’Intelligence Artificielle (IA) à la santé, Pop’Sciences est allé à la rencontre des scientifiques et professionnels de la santé de la région Lyon Saint-Étienne pour mieux comprendre ce que ces nouvelles technologies peuvent apporter (ou pas) à la médecine, notamment en termes de diagnostic…

L’IA tend à se démocratiser dans de multiples domaines professionnels, dont ceux de la santé. Entre espoirs, fantasmes, peurs et applications réelles, cette nouvelle assistance nécessite aujourd’hui d’être mieux décryptée tant auprès des médecins que de leurs patients. Pop’Sciences vous propose de revenir sur quelques applications concrètes pour comprendre ce que l’IA, et ses capacités de calcul, peut faire pour aider les professionnels de la santé dans le diagnostic de la santé mentale, pour fluidifier la prise en charge des patients ou pour apporter toujours plus de précisions en imagerie médicale… mais aussi d’en percevoir les limites, car elle est encore loin de remplacer votre médecin.

 Les articles du dossier

©Freepik

Dans un monde en constante évolution, les chercheurs et médecins se tournent vers l’intelligence artificielle (IA) pour les aider dans la pratique médicale. Pop’Sciences vous dévoile les coulisses du processus de création d’une IA prête au diagnostic, une innovation qui repose sur la précision de la consultation médicale, la richesse des bases de données, et l’entraînement minutieux de modèles IA. En somme, quelle est la recette pour une bonne IA appliquée au diagnostic médical ?

 

Image générée par IA (Dall-E) ©Pop’Sciences

Se classant au deuxième rang des causes de mortalité en France après les accidents cardiovasculaires, les troubles liés à la santé mentale sont aujourd’hui une préoccupation majeure en termes de santé publique. Dans cette quête du « mieux prévenir pour mieux guérir », l’intelligence artificielle (IA) pourrait s’imposer comme un précieux allié dans le diagnostic des troubles mentaux.

 

 

Imagé générée par IA (Dall-E) ©Pop’Sciences

Alors que les avancées technologiques continuent de redéfinir la manière dont les professionnels de la santé prennent en charge les patients, l’IA s’insère de plus en plus dans la relation entre le patient et son médecin. Au cœur de cette transformation, Loïc Verlingue, médecin et chercheur au Centre Léon Bérard partage son expertise de l’IA dans le domaine des essais cliniques en cancérologie.

 

 

©Pexel

Améliorer l’interprétation de l’imagerie médicale (IM) pour en optimiser l’exploitation est au cœur des enjeux de l’intelligence artificielle (IA) au service de l’IM. L’IA n’est plus “seulement” un domaine de recherche en plein essor… mais ses utilisations en sont multiples.  Objectifs affichés : augmenter la précision du diagnostic afin d’améliorer la prise en charge thérapeutique, en évitant les erreurs potentiellement lourdes de conséquences. La guerre des algorithmes est ouverte pour aller toujours plus loin !

 

©Freepik

Entre confiance aveugle et méfiance absolue, comment l’IA doit-elle être éthiquement acceptée et utilisée ? Comment s’affranchir de potentiels biais humains dans les systèmes d’IA utilisés à des fins de diagnostic, ou même thérapeutiques ? Autant de questions qui ne sont plus l’apanage de débats scientifiques, mais doivent être au cœur de débats politiques et sociétaux.

 

 

©Freepik

Dans cette série de questions et réponses, les étudiants de première année du cycle d’ingénieur de l’EPITA, école d’ingénierie informatique, répondent à nos questions concernant l’IA. A-t-elle toujours raison ? Peut-elle développer des sentiments ? Ou, est-elle capable de réelles créations ? Les étudiants nous éclairent.

 

 

 

—————————————————————

MMerci !

Ce dossier a été réalisé grâce à la collaboration de chercheurs et médecins du bassin de recherche Lyon Saint-Étienne :

Ainsi qu’avec la participation de :

  • Maëlle Moranges, docteure en neuroinformatique, apportant son expertise de l’IA en tant que référente sur ce dossier
  • Pascal Roy, chercheur en biostatistique au Laboratoire de Biométrie et Biologie Évolutive – LBBE (Université Claude Bernard Lyon 1) et praticien hospitalier aux Hospices Civils de Lyon. Intervenu lors des rendez-vous professionnels LYSiERES² : « L’intelligence artificielle peut-elle remplacer le médecin ? »
  • Antoine Coutrot, chercheur en neurosciences computationnelles, cognitives et comportementales au Laboratoire d’Informatique en Image et Systèmes d’information – LIRIS (CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Université Lumière Lyon 2, École centrale Lyon). Intervenu lors des rendez-vous professionnels LYSiERES² : « L’intelligence artificielle peut-elle remplacer le médecin ? »
  • Les étudiants de première année du cycle d’ingénieur de l’École pour l’Informatique et les Techniques Avancées (EPITA) : Léo Arpin, Adrien Guinard, Arthur De Sousa, Raphaël Hatte, Pierre Raimondi, Maui Tadeja, Mehdi Ismaili, Gregoire Vest, Emil Toulouse, Todd Tavernier, Remi Decourcelle, Paul Gravejal, Aymen Gassem, Sandro Ferroni, Nathan Goetschy, Rémi Jeulin, Clovis Lechien, Garice Morin, Alice Cariou et Eliana Junker

Nous les remercions pour le temps qu’ils nous ont accordé.

Un dossier rédigé par :

  • Léo Raimbault, étudiant en Master 2 Information et Médiation Scientifique et Technique (IMST) à l’Université Claude Bernard Lyon 1, en contrat d’apprentissage à Pop’Sciences – (Introduction, articles #1, #2, #3 et co-écriture des articles #5 et #6)
  • Nathaly Mermet, journaliste scientifique – (Articles #4 et #5)

L’Intelligence Artificielle en santé : du médecin à l’algorithme | #1 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

LL’Intelligence Artificielle en santé : du médecin à l’algorithme | #1 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

Article #1 – Dossier Pop’Sciences Diagnostic 2.0 : Quand l’IA intervient

Dans un monde en constante évolution, les chercheurs et médecins se tournent vers l’intelligence artificielle (IA) pour les aider dans la pratique médicale. Pop’Sciences vous dévoile les coulisses du processus de création d’une IA prête au diagnostic, une innovation qui repose sur la précision de la consultation médicale, la richesse des bases de données, et l’entraînement minutieux de modèles IA. En somme, quelle est la recette pour une bonne IA appliquée au diagnostic médical ?

  Quel est le rôle du médecin ? Qu’est-ce que l’IA ?

Extrait de la table ronde « IA et santé » organisée par Pop’Sciences le 26 juin 2023. Un rendez-vous professionnel chercheur / journaliste, développé en collaboration avec le Club de la presse de Lyon (Projet LYSiERES²).

Transformer la prise en charge médicale grâce à l’Intelligence Artificielle : entretien avec Loïc Verlingue | #3 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

TTransformer la prise en charge médicale grâce à l’Intelligence Artificielle : entretien avec Loïc Verlingue | #3 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

Article #3 – Dossier Pop’Sciences Diagnostic 2.0 : Quand l’IA intervient

Alors que les avancées technologiques continuent de redéfinir la manière dont les professionnels de la santé prennent en charge les patients, l’IA s’insère de plus en plus dans la relation entre le patient et son médecin. Au cœur de cette transformation, Loïc Verlingue, médecin et chercheur au Centre Léon Bérard partage son expertise de l’IA dans le domaine des essais cliniques en cancérologie.

Un article de Léo Raimbault, rédigé
pour Pop’Sciences – 5 septembre 2023

 

Loïc Verlingue, en tant que médecin au Centre Léon Bérard, vous vous impliquez dans des projets liés à l’intelligence artificielle. Pouvez-vous nous en dire plus sur votre travail dans ce domaine et sur l’impact de l’IA dans la prise en charge médicale ?

Je suis médecin en recherche clinique et travaille en particulier sur les essais cliniques de phase précoce, c’est à dire des nouveaux médicaments qui sont proposés et évalués chez les patients. Généralement, en santé, les essais cliniques sont présentés à des personnes saines, volontaires, voire rémunérées, mais en cancérologie, ces essais sont directement proposés aux patients, c’est notre spécificité.

En plus de mes activités cliniques, je fais de la recherche en intelligence artificielle. Ici, nos données de travail sont les comptes rendus de consultation et médicaux engendrés au cours du suivi. En tant que médecin, je suis « générateur de données » puisque je génère ces comptes rendus à chaque consultation. Je suis également « utilisateur de ces données », car avec celles-ci, j’essaye de développer des outils d’IA pour m’aider dans mes tâches et celles de mes collègues.

Cela fait environ 4 ans que nous travaillons sur le dernier outil, que l’on nomme en anglais « Eligibility Prediction » pour prédiction d’éligibilité au essais cliniques en cancérologie. Pour l’instant, nous en sommes au stade de recherche et de développement, il n’y a pas encore d’outil commercialisé. Si on estime que les performances sont bonnes, nous pourrons commencer à l’utiliser pour sélectionner les patients qui sont le plus en adéquation avec tel ou tel essai clinique.

Un dossier médical (1) peut se composer de diverses sortes de données telles que de l’imagerie médicale (2), des variables clinique (constantes, données biologiques…) (3), de consultations (4), ou d’autres documents textuels (5). ©Centre Léon Bérard

Vous travaillez sur le Traitement Automatique du Langage (TAL), c’est-à-dire des outils d’interprétation et de synthèse automatique de textes reposant sur de l’intelligence artificielle. Quelle est concrètement l’application du TAL dans ces comptes rendus médicaux ?

Il y en a beaucoup, et de plus en plus. Aujourd’hui les outils de Traitement Automatique du Langage évoluent à grande vitesse. Nous avons désormais des modèles qui comprennent parfaitement le langage humain. Sur certaines tâches d’ailleurs, ils sont équivalents à l’humain, voire parfois un peu supérieurs. Concrètement, les outils de TAL sont capables de nous aider à trouver des réponses à des questions, à rechercher des informations dans des textes, à comprendre les émotions exprimées et même à anticiper des résultats en se basant sur des textes.

Par exemple, l’outil que nous développons relie les comptes rendus médicaux aux historiques des patients pour prédire s’ils peuvent être de potentiels candidats pour des essais cliniques. Sans IA, le choix d’éligibilité des patients à ces essais est bien plus long et fastidieux pour les médecins. Cela se décide lors de réunions hebdomadaires dans lesquelles nous consultons un nombre limité de dossiers de patients. Mais nous n’évaluons pas tous les patients d’un hôpital, ou d’hôpitaux environnants, car nous manquons de temps… Ainsi, avec des outils automatiques, nous pourrions lire beaucoup plus d’informations sur les patients, et ce, en seulement quelques secondes !

Toutefois, remplacer les médecins par de l’IA est hors de propos. Il y aura toujours une étape « humaine », ne serait-ce que pour s’assurer que les patients sont intéressés pour participer aux essais cliniques et que les critères de sélection sont respectés. C’est trop subtil pour laisser l’IA seule dans cette tâche, c’est pourquoi il faut tout valider manuellement, humainement.

« Le traitement automatique du langage naturel est un domaine multidisciplinaire impliquant la linguistique, l’informatique et l’intelligence artificielle. Il vise à créer des outils de capable d’interpréter et de synthétiser du texte pour diverses applications » – CNIL. ©Pexel

Vous travaillez avec les dossiers des patients, des informations très sensibles. L’IA pose-t-elle de nouvelles problématiques au niveau de la sécurité des données hospitalières ?

Nous travaillons à l’hôpital, donc avec des données très sensibles et sécurisées, stockées dans des bases de données internes aux hôpitaux. Évidemment, il y a de nombreuses contraintes réglementaires et sécuritaires pour accéder et installer des outils dans ces bases de données. Mais c’est faisable aujourd’hui.

Bien sûr, cela pose beaucoup de questions sur la sécurité des données… et heureusement ! De nouveaux outils appellent de nouvelles questions. Pendant une décennie, les dossiers patients sont passés à l’informatique sans vraiment être exploités. Cependant, ces deux dernières années, nous avons compris leur potentiel pour utiliser des outils automatiques. De fait, beaucoup de médecins et chercheurs se sont penchés sur le sujet pour accéder à ces données. Cela pose nécessairement la question de qui a le droit d’y accéder ? Sachant que le secret médical est un principe fondamental et que nous, médecins, n’avons pas le droit de divulguer les informations d’un patient.

Aujourd’hui, tout est fait pour que ce principe ne soit pas violé. Ce qui est donc compliqué, c’est de faire accéder un tiers à ces données. Peut-on laisser ce droit à une start-up ? Si oui, sous quelles conditions ? Le cas échéant, comment doivent être transformées les données pour qu’elles soient anonymisées ou non reconnaissables, etc. Et puis il y a encore d’autres défis à relever lorsqu’un outil de langage a lu des données… Je ne sais pas si on peut dire qu’il a accumulé des connaissances, mais dans tous les cas, il a eu connaissance d’informations sur la santé des patients…

Cela reste encore un peu flou, les règles de partage de ces outils sont en train d’être mises au point. Quoi qu’il en soit, il faut respecter un certain nombre de règles pour entraîner des modèles d’IA sans extraction d’informations non-contrôlée. Nous ne pouvons certainement pas demander à un outil d’IA le niveau de responsabilité d’un humain. En fin de compte, c’est dans les utilisateurs de cet outil que nous plaçons notre confiance.

 

Rencontrez-vous une certaine réticence de la part des patients vis-à-vis de l’IA ? Ces nouveaux outils sont encore relativement mal compris et peuvent représenter une menace dans l’inconscient collectif.

Tout dépend de comment on les utilise. Quand on explique à un patient que nous utilisons des outils un peu plus automatisés pour leur permettre un accès plus facile à l’innovation thérapeutique, c’est possible que certains y soient réfractaires. Mais la finalité reste positive pour le patient, et c’est généralement bien reçu. Après, nous prenons des mesures pour les informer sur l’utilisation de leurs données.

Par exemple, depuis environ sept ans dans mon hôpital, une information automatique circule auprès des patients concernant l’utilisation de leurs données, et ils ont tout à fait le droit de refuser que celles-ci soient utilisées. C’est un peu comme la stratégie des cookies sur Internet. Si le médecin n’obtient pas le consentement de son patient, il n’a tout simplement pas le droit d’utiliser ses données.

©Pexel

Et de la part des médecins, comment les nouveaux outils d’IA sont-ils perçus ?

Chez les médecins, ce n’est pas homogène évidemment. Oui, les choses ont beaucoup changé avec la médiatisation de l’IA. ChatGPT, qui fait beaucoup de bruit, a mis en lumière des domaines mal connus du Traitement Automatique du Langage. En fait, les gens, et principalement les médecins, ne connaissaient pas forcément ce domaine et avaient du mal à se projeter dans l’outil et en identifier l’utilité. Il y avait un gros travail d’explication et de vulgarisation à amorcer avant que les personnes de la profession puissent en capter l’intérêt appliqué à la santé. Aujourd’hui, beaucoup ont utilisé ChatGPT et en cernent mieux les intérêts et les limites.

Naturellement, comme dans tout métier dans lequel est appliquée l’IA, le premier réflexe est de se dire « un outil qui arrive à comprendre le langage ne va-t-il pas me remplacer à terme ? »… sachant que le métier de médecin est principalement basé sur la communication. On communique avec le patient, on acquiert de l’information, on fait des liens et on rend un diagnostic, puis une proposition de traitement… Mais il existe de nombreuses applications qui peuvent aider les praticiens dans l’exercice de la médecine.

Prenons un exemple caricatural : l’arrivée du thermomètre. Avant, les médecins étaient très forts pour estimer la température du patient rien qu’au toucher. Une fois le thermomètre apparu, ils ont perdu cette compétence, mais ils ont augmenté en précision pour cette application. Finalement, on augmente en niveau de connaissance avec ces nouveaux outils, donc on améliore nos compétences et notre pratique de la médecine, j’espère.

 

L’IA peut avoir de profondes implications dans la relation patient/médecin. L’IA se prêterait-elle à renouer du lien dans les déserts médicaux par exemple ?

La question des déserts médicaux est intéressante pour les applications numériques. Celles-ci ne sont pas la seule solution, évidemment, il y a besoin d’humains. D’ailleurs, je pense qu’il faut d’abord faire des efforts pour ramener des humains dans ces lieux et répondre aux besoins. Mais s’il existe des déserts médicaux, c’est qu’il y a des limites…

Une deuxième solution pourrait en effet reposer sur des outils numériques, comme les chatbots par exemple, qui permettent d’échanger de l’information avec les patients. Finalement, cela pose une autre question : est-ce que le patient peut se retrouver seul face à une machine dans un cadre médical ? Je pense que s’il n’y a pas de lien humain derrière pour personnaliser le diagnostic face à une liste de maladies potentielles, ce peut être extrêmement anxiogène pour un patient… En cela, il existe peut-être un danger à appliquer ces seules solutions numériques dans les déserts médicaux.

 

PPour aller plus loin

 

L’Intelligence artificielle au service de l’imagerie médicale : Des apports majeurs | #4 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

LL’Intelligence artificielle au service de l’imagerie médicale : Des apports majeurs | #4 Dossier Pop’Sciences « Diagnostic 2.0 : Quand l’IA intervient »

Article #4 – Dossier Pop’Sciences Diagnostic 2.0 : Quand l’IA intervient

Améliorer l’interprétation de l’imagerie médicale (IM) pour en optimiser l’exploitation est au cœur des enjeux de l’intelligence artificielle (IA). L’IA n’est plus “seulement” un domaine de recherche en plein essor et ses applications en sont, aujourd’hui, multiples.  Objectifs affichés : augmenter la précision du diagnostic afin d’améliorer la prise en charge thérapeutique, en évitant les erreurs potentiellement lourdes de conséquences. La guerre des algorithmes est ouverte pour aller toujours plus loin !

Un article de Nathaly Mermet, journaliste scientifique, rédigé
pour Pop’Sciences – 5 septembre 2023

 

Améliorer l’interprétation de l’imagerie médicale pour en optimiser l’exploitation est au cœur des enjeux de l’intelligence artificielle ©Unsplash

 

Initialement réservée au diagnostic des fractures des os, l’imagerie médicale a bénéficié d’avancées majeures dans l’ensemble des domaines thérapeutiques. Aujourd’hui, cette spécialité comprend la radiologie diagnostique (radiographies, scanners, IRM, échographie) et la radiologie interventionnelle, à savoir une forme de chirurgie mini-invasive qui utilise l’imagerie pour se repérer, comme pour déboucher une artère en cas d’AVC (accident vasculaire cérébral).

L’imagerie fonctionnelle en est le dernier exemple. Encore émergente et faisant l’objet de projets de recherche, elle vise à révéler les propriétés d’une zone étudiée, notamment sa fonctionnalité (par IRM, Rayons X…) ou à restituer des informations fonctionnelles (par TEP, IRM Fonctionnelle…).

“ L’IA d’aujourd’hui n’est pas la même que celle d’il y a 10 ans, et également différente de celle dont on disposera dans 10 ans” souligne le Dr Alexandre Nérot, médecin radiologue issu de l’Université de Lyon, spécialiste de radiologie interventionnelle et auteur d’une thèse d’exercice sur l’IA (développement d’intelligences artificielles par réseau de neurones). Actuellement en activité au Centre Hospitalier d’Annecy, il nous indique qu’en radiologie, l’usage de l’IA pour l’analyse d’image est attendu et à la fois craint depuis la révolution technologique qu’elle a généré en 2012. “L’évolution se fait par marche, déclenchant à chaque fois des développements de manière exponentielle, mais l’IA actuelle reste un outil et est encore loin de remplacer le radiologue” déclare-t-il, indiquant que si un jour la radiologie venait à être renversée par l’IA alors le problème sera sociétal et pas uniquement cantonné à la radiologie.

En pratique, “l’intérêt, déjà énorme, de l’IA en imagerie médicale est double : elle permet à la fois l’analyse des images, mais peut aussi améliorer de la qualité d’image, grâce à ses « connaissances » acquises en anatomie. Cela nous permet un gain de temps considérable dans la réalisation des images, jusqu’à 14 fois plus rapide ” reconnaît-il, indiquant que pour une fracture, par exemple, le radiologue n’interprète que rarement la radio, mais analyse davantage l’échographie, l’IRM et le scanner. Autre exemple, une mammographie bénéficiera quant à elle d’une double lecture : par le radiologue et par une IA. “L’intérêt n’est pas de remplacer le radiologue, mais d’apporter une nouvelle lecture” insiste Alexandre.

Parmi les perspectives d’applications séduisantes de l’IA pour l’IM : la surveillance de l’activité cérébrale et notamment ses réactions aux stimuli moteurs, émotionnels et mentaux. L’extension de l’IA au service de l’IM dans tous les champs médicaux est donc vertigineuse !

<Les biais à l’épreuve des algorithmes

Les algorithmes ont pour “mission” d’apprendre à repérer des anomalies sur les images, et à détecter de manière fiable et rapide certaines structures subtiles. ©Pexel

Les algorithmes de machine learning, ou apprentissage automatique, ont pour “mission” d’apprendre à repérer des anomalies sur les images, et à détecter de manière fiable et rapide certaines structures subtiles. Grâce aux applications de l’IA à la médecine, il est désormais possible d’analyser massivement toutes sortes d’images dans le but de dépister les tumeurs et autres anomalies. Mais paradoxalement, les algorithmes ne sont pas toujours cliniquement pertinents. C’est ce qu’explique l’étude « Machine learning for medical imaging: methodological failures and recommendations for the future » (en français : Apprentissage automatique pour l’imagerie médicale : échecs méthodologiques et recommandations pour l’avenir), qui décortique les mécanismes à l’œuvre derrière ce paradoxe [1]. Selon les auteurs, face aux biais qui faussent les modèles, en particulier l‘insuffisance des données (quantitative et/ou qualitative) pour entraîner l’algorithme, l’informaticien doit sortir de sa zone de confort et communiquer avec le médecin qui est l’utilisateur de ces algorithmes. “Le manque de données est plutôt de l’imprécision, mais peut créer des biais si les données ne sont pas représentatives du cas réel” précise Alexandre Nérot.

Par ailleurs, dès lors qu’interviennent le Deep Learning et les réseaux de neurones artificiels*, on est en « zone d’opacité », dans laquelle l’explicabilité des résultats n’est pas évidente et où le médecin n’est pas toujours en mesure de comprendre comment l’outil a transformé les données en résultat. Il est donc nécessaire que développeurs et professionnels de santé utilisateurs parviennent à adopter un langage commun pour marier performance et sens. “De plus en plus, il y aura besoin de profils hybrides à l’interface des deux mondes” analyse le Dr Nérot, lui-même développeur, en capacité d’échanger avec les sociétés de développement, indiquant que, grâce à la mise en place d’un diplôme d’IA pour les radiologues, il y aura chaque année une promotion dotée de la double compétence. “Sans devenir un spécialiste, mais avec la volonté de s’y intéresser, chaque médecin devra à l’avenir avoir une petite culture d’IA” affirme-t-il.

ÀÀ l’aube de l’IA 4 IM : déjà des apports majeurs, mais tellement plus à attendre encore !

Si en une décennie, la reconnaissance automatique d’images a bénéficié de progrès fulgurants, la puissance des algorithmes reste le nerf de la guerre pour “aller plus loin”. La compétition fait rage pour quantifier l’erreur et réduire l’incertitude en imagerie médicale afin de garantir la fiabilité et la précision des résultats obtenus.

Outre la quantité, il convient de disposer de données de haute qualité, contrôlées, afin d’entraîner des algorithmes d’IA à délivrer des résultats justes et précis… et leur validation reposera nécessairement sur la comparaison avec ceux obtenus par des experts humains, qui doivent rester les référents. CQFD :  l’IA reste tributaire à la fois des données et de la puissance des algorithmes.  La “data” est donc au cœur des enjeux, et c’est de fait là où le bât blesse si elle s’avère insuffisante, incomplète ou manquante. Composante faisant partie intégrante de l’IA, le machine learning va consister à alimenter le logiciel de milliers de cas cliniques grâce à la contribution des professionnels de santé afin qu’il soit en mesure d’effectuer des tâches de classement, permettant, par exemple, d’identifier des grains de beauté ou des mélanomes malins.

Si on estime que le médecin “réussit à 80%” une identification de cellules, la valeur ajoutée de l’IA n’existe que si elle dépasse largement cette probabilité, pour idéalement s’approcher d’une fiabilité à 100% et apporter une véritable sécurité. Précieux outil pour aider les médecins à diagnostiquer avec plus de précision et de rapidité, l’IA garde pour l’heure le statut… d’outil !

LL’IA appliquée à un monde de variables : l’imagerie médicale

Extrait de la table ronde « IA et santé » organisée par Pop’Sciences le 26 juin 2023. Un rendez-vous professionnel chercheur / journaliste, développé en collaboration avec le Club de la presse de Lyon (Projet LYSiERES²).


—————————————————————

Notes :

[1] Le “machine learning” consiste à apporter une solution à un problème donné en s’appuyant sur un réseau de neurones organisés selon une architecture particulière. Le deep learning est une façon de faire du machine learning en intégrant une quantité importante de données (Big Data)

 

PPour aller plus loin :

[1] https://www.inria.fr/fr/imagerie-medicale-intelligence-artificielle-apprentissage-automatique