CComment construisait-on les maisons en Crète minoenne ? Apports de la démarche expérimentale aux connaissances sur l’architecture de l’âge du Bronze en Crète.La civilisation minoenne (v. 2600-1200 av. J.-C.) a laissé des vestiges matériels remarquables, témoins d’un développement artisanal et artistique exceptionnel (palais, vases de terre cuite et de pierre, fresques, sceaux etc.), au cœur des recherches archéologiques depuis le début du XXe s. Des programmes de recherches en cours à Malia, l’un des sites palatiaux majeurs en Crète, s’intéressent aux bâtiments plus modestes et aux modes de vie dans les maisons de ce centre urbain, mais aussi aux techniques de construction associant terre crue, bois et pierre encore mal caractérisées.Comment et où les briques crues étaient-elles fabriquées ? Quelles structures en bois restituer pour les empreintes que l’on retrouve en négatif dans les vestiges archéologiques ? Pour répondre à ce type de questions et mieux comprendre cette architecture, un bâtiment expérimental a été construit en 2023-2024. La conférence présentera l’intérêt et les premiers résultats de cette démarche.Intervenante : Maia Pomadère, maîtresse de conférences en archéologie grecque à l’Université Paris 1-Panthéon Sorbonne, laboratoire ArScAn (protohistoire égéenne), ANR TiMMA.Dans le cadre du cycle des conférences Pouilloux 2024-2025, organisé par la Maison de l’Orient et de la Méditerranée.>> Découvrir le programme complet du cycle de conférences :Cycle Jean Pouilloux 2024-2025
SSommes-nous trop nombreux sur Terre ? | Avant d’aller sur Mars « Plus de 8 milliards d’humains en 2024… et combien demain ? »Pendant des milliers d’années, Homo sapiens a été une espèce rare dont les effectifs n’augmentaient que lentement. Cependant, à partir de 1800, la population a connu une croissance rapide, d’abord dans les pays riches puis, à partir du XXe siècle, dans les pays pauvres. Cette phase, unique dans l’histoire de l’humanité, pourrait toucher à sa fin d’ici 2100.Au cours de cette conférence, nous explorerons les raisons de la croissance démographique exceptionnelle de notre espèce depuis le XIXe siècle jusqu’à nos jours.Quelles sont les raisons de cette croissance démographique spectaculaire ?Va-t-elle perdurer ?Comment expliquer la stabilisation annoncée ?Est-ce lié à une surpopulation, à la dégradation de l’environnement ou à une détérioration de la santé ?Animée par : Gilles Pison, professeur émérite et conseiller de l’institut national d’études démographiques.Organisé par : le Club EcoVeto Jr, avec Chloé Leroy et Alexandre Fontanella, étudiants à VetAgro Sup, dans le cadre du nouveau cycle de conférences Avant d’aller sur Mars ! Le cycle de conférences Avant d’aller sur Mars ! propose des conférences mensuelles accessibles à tous les publics. Ce cycle est l’occasion d’ouvrir le débat sur des sujets environnementaux tels que l’état climatique, la question énergétique, la conservation de la biodiversité et bien d’autres sujets.>> Vous pouvez assister à la conférence sur site ou en direct sur YouTube.>> Pour en savoir plus, rendez-vous sur le site :VetAgro Sup
«« Ouvrir le futur avec joie » aux côtés du peuple Kogi En 2018, dans la Drôme, une première rencontre totalement inédite avait réuni des représentants du peuple kogi, des scientifiques et des experts occidentaux pour partager leurs connaissances et mener un diagnostic de territoire. En octobre dernier, le projet intitulé Shikwakala1, a entamé sa deuxième édition et a fait escale à l’INSA Lyon. Le jeudi 5 octobre 2023, les savoirs scientifiques ont rencontré les connaissances ancestrales de ce peuple racine vivant dans la Sierra Nevada de Santa Maria, en Colombie. À travers une écoute mutuelle entre les deux approches, ce moment a été l’occasion d’un dialogue pour tenter de composer un « monde commun » et répondre à la question « comment remettre le vivant au cœur de nos actions ? »La mission confiée par la mère Terre : une quête qui résonne vers l’OccidentLes Kogis sont les descendants directs de l’une des plus grandes civilisations précolombiennes du continent latino-américain, les Tayronas. Vivant à plusieurs jours de marche dans la Sierra Nevada de Santa Marta, le plus haut massif côtier de la planète, ils considèrent leur environnement comme « le cœur du monde ». Ces paysages nécessairement isolés et protégés présentent un écosystème unique : pas moins de 96 espèces endémiques et 7 % des espèces d’oiseaux de la planète2 y ont été recensés à ce jour. Le peuple kogi poursuit une quête : celle de tisser un équilibre avec le vivant, en prenant soin des « points chauds » de la « mère Terre ». Éric Julien, géographe et fondateur de l’association Tchendukua – Ici et Ailleurs, aime illustrer leur appréhension de l’environnement naturel par la métaphore suivante : « Ils sont le stéthoscope qui écoute la Terre, qu’ils comparent à un énorme corps humain. Quand on regarde un corps humain, on ne voit pas de prime abord les réseaux sanguins, nerveux, ventilatoires, énergétiques qui relient les organes entre eux. Pour la Terre, c’est pareil : il y a des réseaux sanguins (eaux), ventilatoires (vents, airs…), nerveux (radioactivité naturelle, champs magnétiques…)3 ». Seulement, cet équilibre est menacé par « les petits frères », la société occidentale. « Cette mère est un comme un grand corps humain, et s’il en manque une partie, le reste ne peut plus fonctionner ». Les Kogis vivent dans la Sierra Nevada de Santa Marta, le plus haut massif côtier de la planète. (ⓒTchendukua – Ici et Ailleurs)Pour répondre à la mission confiée par la mère Terre, celle d’enseigner à ceux qu’ils nomment « les petits frères » l’harmonie des choses, les Kogis et l’association Tchendukua – Ici et Ailleurs ont pensé le projet « Shikwakala », invitant à renouer avec le vivant dans une relation d’épanouissement réciproque. (…)LIRE LA SUITE DE L’ARTICLENotes :[1] Shikwakala est le terme choisi par le gouverneur kogi Arregocés Conchacala pour nommer le projet de dialogue avec les autorités spirituelles de la Sierra Nevada de Santa Marta et des scientifiques occidentaux. « Shikwá est un fil invisible, créé dans l’esprit, qui enveloppe la terre entière d’est en ouest, formant un réseau de connexion entre la terre, le soleil et le reste de l’univers, rendant possible sa rotation constante. »[2] La Sierra Nevada de Santa Marta est l’un des plus importants « hotspots » de biodiversité au monde.
SSalle de diffusion des savoirs de l’Observatoire de Lyon L’Observatoire de Lyon s’est doté d’une nouvelle salle d’atelier à destination notamment du public scolaire. Le service de diffusion des savoirs de l’Observatoire y propose des ateliers en astronomie et en géologie. Le service valorise les thématiques de recherche dans les disciplines du Centre de recherche astrophysique de Lyon – CRAL – et du Laboratoire de géologie de Lyon.>> Les thématiques :TerrePlanètesEnvironnement >> Pour plus d’informations pour chaque niveau rendez vous sur :observatoire de Lyon : PrimaireObservatoire de Lyon : Collègeobservatoire de Lyon : Lycée
LLa Terre comme horizon : 50 ans après Blue Marble Blue Marble est l’une des photographies les plus répandues dans le monde. La mise en perspective directe de la Terre dans l’espace continue de nous générer cet « effet de surplomb » décrit par Frank White dans The Overview Effect — Space Exploration and Human Evolution (1987).Ce « point bleu pâle suspendu dans le vide » nous rappelle la finitude planétaire : une image choc qui a bouleversé notre rapport au monde.À l’occasion du 50ème anniversaire de Blue Marble, la soirée multiplie les regards autour de cette icône. Des intervenant·e·s de différents horizons expliquent le rapport qu’ils entretiennent avec elle.Dans le cadre de l’événement « A l’Ecole de l’Anthropocène », organisée en janvier 2023 par l’Ecole urbaine de Lyon.>>Avec la participation :Christoph WIESNER, directeur des Rencontres d’ArlesMichel LUSSAULT, géographe et directeur de l’École Urbaine de LyonJindra KRATOCHVIL, artiste vidéasteGilles RABIN, conseiller spatial à l’Ambassade de France à BerlinIsabelle SOURBÈS-VERGER, géographeSimone FEHLINGER, designer graphiqueAnimé par Valérie DISDIER, directrice adjointe de l’École urbaine de Lyon. >> Regarder la vidéo de la soirée :©Photo : Mélania Avanzato.>> Pour plus d’information, rendez-vous sur le site :lyon
PPourquoi la science des fluides est au cœur des défis du 21e siècle | The Conversation Le sillage des éoliennes du parc offshore Horns Rev 1, à 14 km de la côte ouest du Danemark, en 2008.Christian Steiness pour Vattenfall Le monde dans lequel nous vivons, à commencer par l’air et l’eau qui nous entourent et le soleil qui nous éclaire et nous réchauffe, ainsi que l’écrasante majorité de la matière de l’univers sont fluides. La science des fluides permet d’y voir plus clair dans la plupart des phénomènes naturels ou vivants à la surface de la Terre, mais aussi dans la quasi-totalité des activités humaines, de la santé à l’industrie en passant par les transports et l’énergie… et de leur impact sur le climat et l’environnement.Ainsi, une étude britannique réalisée en 2021 estime par exemple l’impact des avancées de la recherche sur la science des fluides à 16 milliards d’euros et 45 000 emplois directs et plus de 500 000 emplois indirects, dans plus de 2000 entreprises du Royaume-Uni.Mais, alors que les équations qui gouvernent la dynamique des fluides sont connues depuis 200 ans, cette science achoppe encore sur leur complexité mathématique phénoménale. À ces équations très générales, on ne sait donner de solutions générales et on résout actuellement les problèmes au cas par cas. Mais les avancées en informatique et en imagerie ultra-résolue pourraient changer la donne dans la prochaine décennie.LLa traînée aérodynamique, ou pourquoi rouler moins vite permet de faire des économies d’énergie (même si on roule plus longtemps)Un exemple emblématique et quotidien de l’importance de la science des fluides est la traînée aérodynamique. Cette force qu’exerce un fluide sur tout objet s’y déplaçant, nous la ressentons pleinement lorsque nous sortons la main en roulant sur une route de campagne, ou lorsque nous pédalons face au vent. Elle s’oppose au mouvement : l’air « résiste » à notre passage. Elle représente l’une des principales causes de la consommation énergétique de nos véhicules, qu’ils soient terrestres, aériens ou maritimes.Le sillage aérodynamique est un élément clef pour améliorer le rendement des moyens de transport. Les nouvelles techniques d’imagerie à haute résolution permettent aujourd’hui de visualiser la dynamique des écoulements tridimensionnelles complexes se développant dans les sillages.Constantin Jux, Andrea Sciacchitano, Jan F. G. Schneiders et Fulvio Scarano dans la revue Experiments in Fluids, 2018, CC BYEn effet, un résultat majeur de la science des fluides dicte que la puissance instantanée dissipée par cette résistance aérodynamique (l’énergie que l’on doit dépenser à tout instant pour combattre la résistance de l’air) augmente très fortement avec la vitesse. Techniquement, elle augmente avec le cube de la vitesse. Donc réduire sa vitesse de moitié permet d’abaisser d’un facteur huit la consommation instantanée du véhicule. Ainsi, bien que rouler deux fois moins vite implique de rouler deux fois plus longtemps pour parcourir la même distance, la consommation totale intégrée sur la durée du trajet sera alors réduite d’un facteur quatre. Le simple fait de réduire de 10 % sa vitesse (par exemple en roulant à 117 km/h eu lieu de 130 km/h) permet de diminuer de 30 % les pertes aérodynamiques instantanées et de 20 % les pertes intégrées sur la totalité d’un trajet.Les conséquences énergétiques (et donc écologiques et économiques) de cette simple « loi cubique » de l’aérodynamique sont sans appel : rouler moins vite permet de faire des économies d’énergie même si on roule plus longtemps.La relation cubique entre la vitesse et la puissance est également à la base de l’efficacité de la production d’énergie éolienne et hydrolienne qui croît également comme le cube de la vitesse du vent ou du courant.LLa turbulence des fluides : une mise en abîme tourbillonnaireCette loi cubique n’est qu’une des manifestations des écoulements dits turbulents. Bien qu’elle soit le plus souvent invisible, la turbulence est omniprésente, à cause de la très faible viscosité des fluides qui nous sont les plus familiers : l’eau et l’air.Le mélange de deux fluides implique des tourbillons d’échelles très différentes – comme avec volutes de fumée de tabac par exemple. Ici, grâce à l’imagerie de fluorescence, on ne visualise qu’une tranche laser d’un processus 3D, ce qui permet de mieux appréhender les structures imbriquées de la cascade.Mickael Bourgoin, ENS Lyon, Fourni par l’auteurQui ne s’est jamais émerveillé devant des volutes de fumée, en observant les remous d’une rivière, en mélangeant des colorants en cuisine ou en contemplant les images des tourbillons à la surface de Jupiter ?La prochaine fois que vous observerez l’un de ces phénomènes, soyez attentifs à la façon dont les tourbillons s’imbriquent les uns dans autres : les grands tourbillons transportent les plus petits tourbillons, dans une sorte de mise en abîme que les scientifiques appellent cascade turbulente.Études sur l’eau de Léonard de Vinci au début XVIᵉ siècle. Dessin de la chute d’eau d’une écluse dans un bassin, illustrant la cascade turbulente et l’imbrication des petits tourbillons dans les grands.Royal Collection Trust Copyright Sa Majesté la Reine Elizabeth II 2018Léonard de Vinci avait déjà remarqué l’universalité de cette organisation dans les écoulements turbulents, mais 500 ans plus tard, la compréhension de cette dynamique multiéchelle et aléatoire (mais non complètement désordonnée) de la turbulence reste l’un des plus grands mystères et l’un des principaux défis de la science contemporaine.Malgré la complexité des phénomènes physiques sous-jacents, nous acquérons dès le plus jeune âge un savoir empirique nous incitant à « touiller » pour mélanger. Sans le savoir, nous déclenchons ainsi la turbulence. Nous lui devons aussi la dispersion et la dilution des polluants et des aérosols anthropiques dans l’atmosphère, sans lesquelles nos villes seraient irrespirables.Nous ne sommes en revanche toujours pas capables de prédire comment les mouvements très intermittents de la turbulence (qu’elle soit atmosphérique, océanique, industrielle, etc.) sont capables de déclencher des événements extrêmes et des changements drastiques du comportement à grande échelle des écoulements.Le détournement spontané du Gulf Stream (scénario du film Le Jour d’après), la modification du mouvement du noyau externe de la Terre (scénario du film Fusion), l’apparition soudaine d’une tornade, la perte soudaine de la portance d’une aile trop inclinée sont des exemples de ces transitions brutales et extrêmes, que les scientifiques observent également dans leurs expériences et simulations numériques, mais que nous n’arrivons pas à prédire.Les enjeux liés à la compréhension de la turbulence sont donc de taille et conditionnent notre capacité à espérer un jour être en mesure de prédire l’imprévisible, d’anticiper plus finement le dérèglement climatique et ses conséquences, d’améliorer la sécurité de nos installations industrielles et énergétiques, et plus généralement d’innover dans tous les secteurs d’activités où interviennent les fluides, depuis les biotechnologies jusqu’au développement des industries, des énergies et des transports verts de demain.LLes nanofluides : un immense potentiel aux plus petites échellesExpérience imitant le flux de fluide dans un sol avec des grains de tailles très différentes. Le flux est visualisé grâce à des particules fluorescentes.Dorothee Luise Kurz, ETH Zurich, CC BY-NC-NDLa science des fluides est cruciale aussi pour maîtriser des écoulements confinés à très petite échelle, comme ceux qu’on rencontre dans nos vaisseaux sanguins, dans nos cellules, ou dans le sol.La « microfluidique » a connu un essor fulgurant au tournant du XXIe siècle, révolutionnant la technologie des laboratoires sur puce, et de leurs applications à la chimie analytique, la biologie et la médecine, telle que l’étude de l’ADN et ses mutations par exemple.L’heure est à présent à la « nanofluidique », étudiant les écoulements à l’échelle du millionième de millimètre. La maîtrise de ces écoulements est complexe, car la nanofluidique se trouve à la frontière d’une description continue des fluides et de la nature moléculaire et atomique, voire quantique, de la matière. Elle ouvre pourtant aujourd’hui des perspectives technologiques très prometteuses, par exemple vers des applications à la production d’énergie renouvelable par des flux osmotiques, entre des réservoirs d’eau douce et d’eau salée, à travers des nanopores dans des membranes spécialement conçues.Le fluide rouge est utilisé pour focaliser le flux de fluide vert (qui coule de droite à gauche), jusqu’à une épaisseur d’environ 20 micromètres.Ihor Panas, Wikipedia, CC BYLLe paradoxe de la théorie des fluidesMais malgré ce rôle central des fluides dans notre vie et notre univers, et alors que nous célébrons cette année le bicentenaire de l’établissement des équations maîtresses de la dynamique des fluides (dites « de Navier-Stokes »), leur utilisation reste encore limitée en pratique. Pour certains fluides, comme les nanofluides ou les fluides dits complexes (rhéoépaississants, rhéofluidifiants, etc.), la théorie doit notamment être complétée par une compréhension raffinée de leurs propriétés physiques particulières (souvent passionnantes). Mais les limitations de la théorie des écoulements fluides sont avant tout mathématiques, même pour les fluides simples les plus courants comme l’eau et l’air.En effet, les équations de Navier-Stokes sont réputées exactes pour décrire de manière très générale les écoulements des fluides simples dans presque toutes les situations, mais leur complexité mathématique est telle que leur résolution mathématique n’est possible en pratique que dans un nombre très restreint de situations. À tel point que les scientifiques se posent encore des questions profondes sur l’existence et la nature même de leurs solutions.Simulation numérique à toute petite échelle et dans des conditions idéalisées d’un écoulement turbulent de deux fluides de viscosité différente (bleu et rouge). Cette simulation, avec une précision d’environ 100 milliards de nœuds de maille, a nécessité l’utilisation de 80 millions de cœurs de CPU pendant 7 jours en continu, afin de simuler l’équivalent de quelques secondes d’écoulement.M. GaudingOn pourrait croire que, disposant aujourd’hui d’ordinateurs ultra-puissants, nous sommes capables de résoudre numériquement ces équations à défaut de pouvoir la résoudre analytiquement. Mais on se heurte en fait à deux difficultés quasiment insurmontables, liées à deux propriétés fondamentales des équations de Navier-Stokes : leur nature non locale et non linéaire.La non-localité implique qu’il n’est pas possible de connaître l’état d’un fluide à un endroit donné sans connaître sa dynamique partout ailleurs (du moins sur une étendue suffisamment vaste autour de la zone d’intérêt) : la météo au-dessus de l’hexagone est ainsi affectée par l’anticyclone des Açores. Prédire un écoulement à un endroit donné d’un système requiert donc de résoudre les équations sur l’ensemble du système.La non-linéarité est à l’origine de la turbulence et de la formation de tourbillons erratiques de toute taille, la cascade turbulente. La gamme d’échelles entre les plus petits et les plus grands tourbillons peut s’avérer pharaonique : dans l’atmosphère par exemple, des tourbillons existent depuis les échelles millimétriques, jusqu’à des cyclones et anticyclones pouvant atteindre de milliers de kilomètres.Pour ces raisons, pour simuler de nombreux écoulements (industriels et naturels) de façon réaliste, il faudrait des ordinateurs bien plus gros que ceux disponibles de nos jours. À titre d’exemple, une simulation directe de la basse atmosphère nécessiterait 5 milliards de milliards de milliards de nœuds de maille alors que les plus gros calculateurs au monde, comme le supercalculateur Jean Zay en France, ne sont capables de résoudre raisonnablement les équations de Navier-Stokes « que » sur un maillage comprenant de l’ordre de mille milliards de nœuds de maille).Ainsi, bien qu’elle soit connue depuis deux siècles, la théorie du mouvement des fluides est en pratique difficilement exploitable en l’état.UUne science amenée à se renouveler en permanenceDes approches alternatives sont donc indispensables. Elles sont basées sur l’expérimentation, sur l’observation, et plus récemment sur les méthodes d’intelligence artificielle.Le développement d’outils prédictifs et préventifs, tractables sur nos calculateurs, passe par la mise au point de « modélisations réduites » pour lesquelles le nombre de points de maille nécessaires est considérablement réduit par rapport à ceux requis pour une simulation numérique directe des équations de Navier-Stokes. Ces modèles s’appuient sur ces équations maîtresses, mais ne résolvent explicitement que les plus grandes échelles de la cascade turbulente. La contribution des plus petites échelles est décrite de manière globale par à un nombre restreint de paramètres (par exemple sous la forme d’une viscosité, d’une diffusivité, d’un forçage… effectifs) qu’il s’agit de déterminer au cas par cas par des recherches approfondies sur les phénomènes physiques sous-mailles et de leur impact à grande échelle.Les modélisations du climat doivent inclure des échelles très différentes pour prendre en compte les mécanismes pertinents à la surface de la Terre – ici la température des océans et leur vorticité sont modélisées, mais seules les échelles supérieures à 100 kilomètres sont vraiment résolues et l’ensemble des processus se déroulant à une échelle plus fine sont décrits par des modèles approchés – convection, nuages, vagues, couplage avec le relief, couplage océan/atmosphère, etc.Los Alamos National Lab, CC BY-NC-NDCes modélisations, par essence parcellaires, sont en permanence ajustées et améliorées à mesure que les besoins évoluent et que notre capacité à tester les modèles et décrire les phénomènes des petites échelles à partir de données expérimentales, observationnelles et numériques se perfectionne.La révolution de l’imagerie numérique à haute cadence et à haute résolution de la dernière décennie, des technologies neuromorphiques, l’évolution constante des supercalculateurs (y compris la révolution attendue de l’ordinateur quantique) et les méthodes novatrices basées sur l’apprentissage et l’intelligence artificielle laissent entrevoir des avancées spectaculaires quant à nos capacités à mesurer, modéliser et prédire la dynamique des fluides, indispensables aux ruptures requises pour affronter les grands enjeux sociétaux du moment : la transition écologique et énergétique, le climat et la santé. Article publié sur The Conversation le 19 juin 2023Mickael Bourgoin, Directeur de recherche CNRS en hydrodynamique au Laboratoire de Physique à l’ENS de Lyon, ENS de LyonCet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.
DDe la Terre à la Lune, vers un nouvel écosystème ? / Cours public 2023 Alors que la relation de l’homme à sa planète est désormais une préoccupation croissante, il convient de s’interroger sur les modalités de notre relation à l’espace. Découvrez les 3 vidéos du cours public proposé par la géographe Isabelle Sourbès-Verger (CNRS – Centre Alexandre-Koyré).Cela fait quelque temps que les États-Unis évoquent la mise en place progressive d’un système Terre-Lune au sein duquel s’établiraient de nouvelles relations avec notre satellite naturel à l’horizon 2035. Déjà, la multiplication des constellations au voisinage proche de la Terre, entre 300 et 1500 km, marque une nette accélération de l’occupation de l’espace extra atmosphérique. Et des états de plus en plus nombreux annoncent des projets spatiaux en parallèle des ambitions des acteurs privés.Comment comprendre cette extension des activités humaines ? Quels en sont les traits majeurs ? Le Traité de 1967 posait que l’exploration et l’utilisation de l’espace étaient l’apanage de l’humanité toute entière. Cinquante-cinq ans plus tard, ces principes sont-ils toujours appliqués ? Alors que la relation de l’homme à sa planète est désormais une préoccupation croissante, il convient de s’interroger sur les modalités de notre relation à l’espace.Intervenante : Isabelle Sourbès-Verger est géographe, directrice de recherche au CNRS. Ses travaux portent sur les modalités d’occupation de l’espace circumterrestre et l’analyse comparée des politiques spatiales nationales. Cette approche croisée met en lumière les enjeux transverses de l’activité spatiale, allant de la coopération scientifique à la problématique de la guerre dans l’espace.>>> Voir la vidéo de la 1re séance :>>> Voir la vidéo de la 2e séance :>>> Voir la vidéo de la 3e séance :
«« Les entrailles de la Terre sont un puits de défis scientifiques » Depuis début février, le sud de la Turquie et le nord de la Syrie sont en proie à des évènements sismiques violents. Le territoire, placé sur trois failles, a grondé si intensément que les secousses ont été ressenties dans tout le Moyen-Orient, faisant des dégâts humains et matériels désastreux. Le caractère exceptionnel des tremblements de terre a interrogé les scientifiques des quatre coins du globe. Les territoires turcs et syriens ont récemment subi plusieurs tragiques épisodes sismiques, faisant plusieurs milliers de victimes. Que s’est-il passé sous ces terres pendant le premier en date ?C’est l’une des grandes difficultés de l’étude des séismes : chaque évènement est un cas particulier. La Turquie est un site sismique connu depuis longtemps, reposant sur deux grandes failles ; la faille nord-anatolienne qui traverse toute la Turquie jusqu’à Istanbul, puis la faille est-anatolienne, en dessous, qui atteint un point triple. (…)LIRE LA SUITE DE L’ARTICLE
ÀÀ l’Ecole de l’Anthropocène revient au Rize avec sa 5e édition Cinq journées pour comprendre, imaginer, construire les possibles autour du changement global.Du 24 au 28 janvier 2023, l’École urbaine de Lyon – Université de Lyon et ses partenaires proposent la 5e édition de l’événement « À l’École de l’Anthropocène » accueillie, pour la seconde année, au Rize à Villeurbanne. L’exploration de la question anthropocène, pour tous les publics, se poursuit à travers une diversité féconde de formats et d’acteurs. L’anthropologue Tim Ingold sera l’invité d’honneur de cette édition placée sous le signe de la fragilité, du soin et de la relationnalité.Au programme, soirées débats, conférences, performances – cours publics – ateliers, séminaires – balades et visite de l’exposition « ça se trame à Villeurbanne » – portraits de figures de l’écologie – cartes blanches à des collectifs – rencontres à la médiathèque du Rize avec des auteurs autour de leur parution récente – programmation cinéma adulte et jeunesse au Comoedia – programmation de Radio Anthropocène.PROGRAMME>> Pour en savoir plus : ecoleanthropocene.universite-lyon.frhttps://cellar-c2.services.clever-cloud.com/s3.popsciences.universite-lyon.fr/uploads/2023/01/aea23.anim1200x1200-gif-3a.mp4Un événement produit par : l’École urbaine de Lyon/Université de Lyon, En partenariat avec : le Rize, le LabEx IMU (Intelligences des Mondes Urbains) et Cité anthropocène.Une programmation préparée en collaboration avec : October Octopus.Partenaires : Ville de Villeurbanne – Métropole de Lyon – Centre national d’études spatiales (CNES) – Laboratoire Environnement Ville Société (EVS) – Comœdia – SERL – Maison du projet Gratte-Ciel Centre-Ville – LyonBD Festival – Centre de Culture Contemporaine de Barcelone (CCCB) – Ville de Lyon – Radio Bellevue Web – Lyon Music.
SSecrets de la Terre Sans que nous en ayons toujours conscience, les minéraux nous entourent : la pierre sert à la construction de nos habitats ; les métaux à la fabrication des monnaies et des machines ; les roches, comme le charbon, à la production de l’énergie ; les terres, minerais et sels à l’industrie.Entre l’histoire des civilisations et celle, bien plus ancienne, de la formation des minéraux, l’exposition met en évidence les propriétés physiques et chimiques des minéraux et leurs utilisations à travers les âges, depuis la Préhistoire. La raréfaction de ces ressources est aujourd’hui un véritable enjeu. De nouvelles découvertes pourraient être porteuses d’un avenir plus respectueux de l’environnement et des êtres vivants, mais le défi est de taille.Riche de près de 10 000 pièces et classée parmi les grandes collections publiques françaises, cette exposition met à l’honneur la collection de minéraux du musée des Confluences. L’ exposition bénéficie du label « Année de la minéralogie 2022 ».Pour en savoir plus :Secrets de LA Terre