Pop’Sciences répond à tous ceux qui ont soif de savoirs, de rencontres, d’expériences en lien avec les sciences.

EN SAVOIR PLUS

Ressources

Écologie - agronomie - développement durable - énergie

Dossier

Pop'Sciences - Université de Lyon

CConstruire une machine à recycler l’eau : mode d’emploi | Un dossier Pop’Sciences – épisode 2

Pilote du procédé RECYCLO © S. Dizier

Le projet Life RECYCLO a pour objectif de développer un procédé de recyclage des eaux usées [consultez l’épisode 1 du dossier Pop’Sciences]. Partenaire du projet, Pop’Sciences vous emmène découvrir les coulisses de la fabrication de ce système.

Dans le cadre du projet européen Life RECYCLO, la société TreeWater, une start-up lyonnaise issue du laboratoire DEEP de l’INSA Lyon, développe un procédé de traitement et de recyclage des eaux usées pour le secteur de la blanchisserie. L’objectif ? Proposer une meilleure gestion des ressources en eau et réduire le déversement de substances polluantes dans le milieu aquatique. Le procédé développé a pour but d’éliminer plus de 90 % des polluants. Ces eaux recyclées seront alors réutilisées par ces mêmes blanchisseries dans leur processus de nettoyage, avec un objectif d’économie de 50 à 80 % d’eau. Mais comment cela fonctionne-t-il exactement ? Comment fait-on pour recycler de l’eau ?

Le procédé RECYCLO se décompose en trois étapes : la coagulation-floculation, l’oxydation avancée et l’adsorption sur charbon actif. La seconde étape est la phase principale du processus : son principe est d’associer un composé chimique, le peroxyde d’hydrogène, et des rayons ultraviolets. Ce procédé doit être adapté à chaque blanchisserie selon ses effluents, c’est-à-dire ses eaux usées. Les ingénieurs de TreeWater font ainsi du sur-mesure pour mettre en place leur technique. Nous vous proposons de découvrir les trois étapes de ce recyclage au travers de la visite des laboratoires et installations de la start-up.

Du sur-mesure

Première étape de la recette : la coagulation-floculation. Pour la découvrir, nous nous sommes rendus dans le laboratoire de TreeWater, hébergé au laboratoire DEEP. Thibault Paulet, technicien recherche et développement, nous y accueille, entouré de béchers, pipettes et autres ustensiles. Et il nous explique en quoi consiste cette première étape : « La coagulation va permettre d’enlever tout ce qui n’est pas dissous dans l’eau, les matières en suspension. » Il s’agit ainsi d’une première phase de nettoyage de l’eau, qui est essentielle pour la suite. « Cela va rendre l’eau limpide et améliorer la transmission des rayonnements ultraviolets. Ce qui sera primordial pour l’étape suivante d’oxydation avancée à base de ces derniers », analyse Thibault Paulet.

Thibault Paulet est en train de déposer le coagulant dans un effluent de blanchisserie. / © S. Dizier

Pour mettre en place ce processus, il faut introduire un coagulant dans les effluents. Celui-ci va regrouper les molécules solides entre-elles. C’est alors à cette étape que les dosages doivent être faits au cas par cas. Tous les rejets d’eaux usées de blanchisseries ne contiennent pas les mêmes choses, et vont donc réagir différemment avec le coagulant. « Je dois faire des essais sur plusieurs concentrations, parce que si je ne mets pas assez de coagulant, cela ne va pas fonctionner, raconte Thibault Paulet. Mais si on en met trop, cela ne va pas coaguler non plus. Il faut donc trouver le juste milieu. » Le scientifique dépose donc précisément différentes quantités de coagulants dans plusieurs béchers remplis du même effluent. Le but est alors de déterminer quelle est la concentration idéale pour cet effluent précis. Plusieurs essais sont alors nécessaires pour trouver le bon dosage. Des agitateurs sont placés dans les béchers. Et c’est parti pour 200 rotations par minute pendant deux minutes. On voit alors déjà les particules apparaître.

Résultats de coagulation-floculation selon des concentrations de produits différentes (de gauche à droite : du moins au plus concentré). / © Thibault Paulet

Le floculant entre alors en jeu. Son but est de favoriser l’agrégation des molécules, telle une colle. Ce regroupement en amas de molécules rend ainsi la filtration plus aisée. Le technicien rajoute le floculant aux mélanges. Et après quelques tours de rotation supplémentaires, des nuages moutonneux de particules apparaissent au fond des béchers. Il ne reste plus qu’à les filtrer pour obtenir une eau limpide. Une fois le dosage idéal trouvé, cette eau va alors être soumise à des tests sur un prototype miniature du système d’oxydation avancée. Et si le test est concluant, on peut alors passer à la seconde étape de notre recyclage.

Peroxyde d’hydrogène et rayons ultraviolets

Pour cela direction Alixan, à quelques kilomètres de Valence, dans les locaux de TreeWater.  Dans un hangar en bois, les ingénieurs de la société s’affairent sur le pilote de leur procédé. Il s’agit de l’élément central de la deuxième phase du processus de recyclage : le système d’oxydation avancée. Le principe de cette technologie est d’associer le peroxyde d’hydrogène et les rayons ultraviolets. Ces derniers vont agir sur le peroxyde d’hydrogène, ce qui a alors pour effet de les transformer en radicaux hydroxyles. Ce sont alors ces radicaux qui vont détruire les polluants. Les rayons UV désinfectent également l’eau en parallèle.

Concrètement, le dispositif ressemble à un grand cylindre en métal dans lequel se trouvent les lampes UV et les effluents passent au milieu de celles-ci. Paul Moretti, chef de projet recherche et développement et coordinateur du projet Life RECYCLO, nous présente le pilote sur lequel sont faits les essais. « Ce n’est pas une installation finale, il s’agit d’une machine intermédiaire pour faire des essais à plus grande échelle qu’en laboratoire, nous explique-t-il. Cela permet d’identifier le rendement du traitement sur un effluent spécifique sur une période plus longue et avec de plus grands volumes. »

Le réacteur du système d’oxydation avancée du pilote comporte trois lampes UV. / © S. Dizier

Ce pilote comporte trois lampes UV. L’installation finale sera composée de V12, des réacteurs qui contiennent douze lampes et 75 litres d’eau. La quantité de réacteurs dépend alors de la quantité d’eau utilisée quotidiennement par les blanchisseries. Pour une blanchisserie de taille industrielle, comme la Blanchisserie Saint Jean, partenaire du projet, trois V12 seront nécessaires. Il faut alors compter sur des armoires électriques conséquentes pour alimenter ce processus. Vincent Fraisse, responsable conception et fabrication chez TreeWater, nous explique : « L’armoire pilote toute l’installation : les lampes UV, mais aussi tout ce qu’il y a autour comme les pompes, le moteur et l’automate qui pilote l’ensemble. » Tout l’appareillage nécessaire au recyclage – la coagulation/floculation, le système d’oxydation avancée et l’armoire électrique – sera ainsi placé dans un conteneur attenant à la blanchisserie ; une installation d’une taille non-négligeable.

L’armoire électrique nécessaire au fonctionnement de tout le processus de recyclage. / © S. Dizier

Après le passage dans le système d’oxydation avancée, vient alors l’étape finale de notre recette. Il s’agit de l’adsorption des impuretés sur charbon actif. Pour cela retour au laboratoire où les essais sont également effectués. « C’est le dernier traitement des effluents. L’eau va passer dans la colonne de charbon actif pour la débarrasser des toutes dernières impuretés », nous décrit Thibault Paulet. Après cette ultime étape, notre objectif est atteint : l’eau est recyclée. Elle peut alors être mélangée à 20 % d’eau potable et ainsi être réutilisée en toute sécurité pour le nettoyage du linge.

Trois prototypes à l’essai

Dans le cadre du projet Life RECYCLO, le premier prototype de cette technologie sera mis en place durant l’automne 2022 dans une blanchisserie espagnole près de Gérone. Deux autres prototypes seront installés en 2023 dans une blanchisserie luxembourgeoise et une blanchisserie française, la Blanchisserie Saint Jean (Gard). L’objectif est alors d’achever l’industrialisation de ce système breveté et de tester sa reproductibilité. Un projet à suivre jusqu’en 2024 !

Pour en savoir plus sur le projet Life RECYCLO, retrouvez le premier article du dossier RECYCLO de Pop’Sciences.

Des ressources et actualisations suivront cet article pour compléter ce dossier tout au long de l’année….