Suite aux mesures sanitaires prises concernant l'épidémie de Covid-19, les évènements en présentiel sont annulés jusqu'à nouvel ordre. Pop'Sciences reste mobilisé pour vous informer sur l'actualité scientifique et proposer des rendez-vous en distanciel.

Cet été, 4 soirées pour observer le ciel au Planétarium !

CCet été, 4 soirées pour observer le ciel au Planétarium !

Les 09, 16, 23 et 30 juillet, le Planétarium ouvre ses portes pour des soirées d’observation du ciel.

Vivez une pleine expérience de notre offre en nocturne, et plus encore : visite libre des expositions, labo dans le jardin astronomique ou encore séance de découverte du ciel en salle immersive. Une fois la nuit tombée, deux postes d’observation (dont le télescope de l’observatoire) seront à votre disposition pour découvrir, en compagnie de médiateurs scientifiques, les planètes, étoiles et galaxies visibles dans le ciel.

Programmation des jeudis 9, 23 et 30 juillet

  • 20h30-21h30 : séance d’astronomie Découverte du ciel
  • 21h30-22h15 : début de l’observation si la Lune est visible, ou labo Il était une fois l’espace
  • 22h15-23h30 : observation du ciel nocturne

Un programme alternatif sera proposé en cas de conditions météorologiques défavorables.

Programmation spéciale du jeudi 16 juillet

Jeudi 16 juillet, programmation spéciale en partenariat avec le Centre culturel Charlie Chaplin, avec une représentation du spectacle Horizon(s) par la compagnie les Non Alignés, à 19h30 dans le jardin astronomique du Planétarium. Les visiteurs embarqueront dans un vaisseau spatial, pour un voyage à deux voix en direction des trous noirs…

  • 19h30-20h30 : Horizon(s) – Spectacle de la compagnie Les Non Alignés
  • 20h30-21h30 : visite libre des expositions
  • 21h30-22h15 : séance d’astronomie Découverte du ciel
  • 22h15-23h30 : observation du ciel nocturne

Un programme alternatif sera proposé en cas de conditions météorologiques défavorables.

En savoir plus :

Planétarium de Vaulx-en-Velin

 

Déconfinement des quarks, casse-tête de la physique

DDéconfinement des quarks, casse-tête de la physique

Pourquoi aller parler de déconfinement avec des physicien·ne·s des particules ? Pour aborder l’un des mystères de la physique moderne : le déconfinement des quarks.

 

De quoi sommes nous fait ? De cellules répondront les biologistes. Elles-mêmes constituées de molécules et d’atomes ajouteront les chimistes. Mais la physique des particules nous apprend que les atomes sont eux aussi des assemblages d’objets encore plus petits : des particules élémentaires.

Un atome contient un noyau (un ensemble de protons et de neutrons), autour duquel orbitent des électrons. Dans le cas le plus simple d’un atome d’hydrogène : un électron et un proton. L’électron est une particule élémentaire. En revanche, le proton est une particule composite : un assemblage de trois quarks. Les quarks sont des particules élémentaires au même titre que les électrons, mais leur nature est très différente…

 

Lire la suite de l’article sur :

Science pour tous

La traque des ondes gravitationnelles grâce aux supers miroirs

LLa traque des ondes gravitationnelles grâce aux supers miroirs

Le 14 septembre 2015, l’observation du premier tango entre deux trous noirs, situés à 1,3 milliards d’années-lumière de la Terre, marqua la confirmation directe de l’existence des trous noirs. Cette grande découverte a permis d’ouvrir une porte sur une nouvelle façon d’observer notre Univers via la recherche des ondes gravitationnelles.

Il se passe dans l’Univers des phénomènes physiques, à la fois violents et spectaculaires, comme par exemple, la danse de deux trous noirs ou de deux étoiles à neutrons. Ces deux objets cosmiques très compacts gravitant l’un autour de l’autre, se rapprochant petit à petit, évoluent comme deux danseurs de tango. Quand la fin de la danse approche, une fusion brutale se produit. Le choc entre ces deux trous noirs est si fort qu’il va secouer et faire trembler l’espace-temps. La vibration est une onde qui va se propager comme une vague dans tout l’Univers. Ce phénomène, appelé onde gravitationnelle, a été conceptualisé par Albert Einstein en 1916 et la première détection a eu lieu un siècle plus tard, en 2015.

Les vibrations issues de chocs extrêmement violents dans l’Univers, ont paradoxalement une taille infime en arrivant sur Terre, réduisant ainsi les violentes explosions en un chuchotement.

Simulation de deux trous noirs avant leur collision / © SXS, the Simulating eXtreme Spacetimes (SXS) project

La Traque d’un siècle : détection des danses cosmiques

La recherche de ces ondes est rendue possible grâce à des observatoires conçus spécialement pour la détection de ce type d’évènement : LIGO (Laser Interferometer Gravitational-Wave Observatory) aux États-Unis et Virgo en Italie. Après quatre décennies de recherches et de développement en instrumentation, la découverte des ondes gravitationnelles fut récompensée par un prix Nobel de physique en 20171.

Ces observatoires sont des détecteurs optiques géants permettant d’écouter les vibrations de l’espace-temps qui nous viennent du fin fond du cosmos. Ils sont composés de deux bras de plusieurs kilomètres perpendiculaires, d’un laser et de plusieurs miroirs au pouvoir réfléchissant exceptionnel. Le faisceau laser est séparé en deux grâce à une lame séparatrice. Chaque partie du faisceau va se propager le long des bras, rebondir sur les différents miroirs se trouvant en bout de bras et faire plusieurs allers-retours avant de se recombiner au niveau d’un détecteur. Le passage d’une onde gravitationnelle sur Terre va faire varier la distance parcourue par le faisceau laser et révéler ainsi l’existence d’une danse cosmique.

Les miroirs qui composent le détecteur géant jouent un rôle capital dans la détection, car ils rendent l’instrument extrêmement sensible capable d’entendre les signaux cosmiques qui parcourent l’espace-temps en centaine de milliers d’années lumières2. C’est comme un microphone géant qui écoute les signaux qui lui arrivent de l’espace. Ces signaux nous informent sur ce qui se passe au-delà de notre système solaire en nous donnant l’identité, la distance et la masse de ces danseurs de l’extrême fin fond de l’Univers.

Vue aérienne du détecteur d’ondes gravitationnelles Virgo à Pise (Italie). On peut voir les longs bras de 3 km et le bâtiment central dans lequel le laser et le système de détection se trouvent. / © The Virgo collaboration/N. Baldocchi

Ma mission : une traque à l’échelle micrométrique

La mission qui m’a été confiée pour ma thèse est d’optimiser les miroirs hautes réflectivités des détecteurs d’ondes gravitationnelles Virgo et LIGO. Au Laboratoire des Matériaux Avancés (LMA/IP2I) de Lyon, les miroirs fabriquées comportent des spécificités à la pointe de la technologie. Grâce à une machine de dépôt unique au monde, on traite les miroirs en déposant une fine couche de matériaux en surface. Par ce procédé, les miroirs deviennent réfléchissants et très précis. Néanmoins, il crée des imperfections en surface qui deviennent problématiques pour la détection des vibrations de l’espace-temps3.

J’étudie la formation de minuscules défauts dans les couches minces optiques. Ces défauts de quelques microns diffusent la lumière du faisceau laser dans les bras des détecteurs induisant une perte en sensibilité. Pour cela, j’analyse de nombreux échantillons de miroirs avec différents paramètres de dépôts et je cherche à identifier la quantité et la nature de ces défauts. En parallèle, une deuxième partie de mon travail consiste à simuler le comportement de ces défauts avec la lumière laser pour comprendre ce qui se passe le long des bras des détecteurs.

Quand le mystère sur l’origine de ces défauts sera percé, il faudra ensuite trouver une solution pour les supprimer, car comprendre leur origine n’est pas suffisant. Ainsi, la performance des futurs miroirs sera grandement améliorée. Ils pourront détecter davantage d’ondes gravitationnelles qui nous arrivent du confins de l’espace et ainsi comprendre un peu plus notre étonnant Univers qui déjà ne cesse de nous surprendre.

Article écrit par Sihem Sayah, doctorante au Laboratoire des Matériaux Avancés – LMA – plateforme nationale de l’IP2I  (Université Claude Bernard Lyon 1)

Article publié dans le cadre des dossiers  « Les doctorants parlent de leur recherche » en partenariat avec Pop’Sciences – 25-06-2020

————————————————————-

Notes :

[1]  Les physiciens américains Rainer Weiss, Barry C. Barish et Kip S. Thorne.

[2]  Une année lumière (a.l) est la distance parcourue par la lumière dans le vide en une année. Une année lumière = 9 461 milliards de kilomètres.

[3]  La vibration est une vague qui ne dépasse pas un milliardième de milliardième de mètre tel que mesuré dans les détecteurs géants sur Terre.

 

PPour aller plus loin

 

La recherche de la diversité des mondes

LLa recherche de la diversité des mondes

Pour sa troisième conférence en ligne, l’Observatoire de Lyon vous donne rendez-vous avec Isabelle Vauglin, chercheuse au Centre de recherche astrophysique de Lyon (CRAL) pour parler des exoplanètes !

La quête de nouveaux mondes est très ancienne mais la preuve de l’existence de planètes extrasolaires date seulement de 1995. Les astronomes ont mis au point des moyens d’observation très précis et complexe pour arriver à les détecter tels que les instruments ELODIE, HARPS, ASTEP et maintenant SPHERE. Au programme : une présentation des différentes méthodes développées pour détecter les planètes extrasolaires, un tour d’horizon de la diversité des exoplanètes connues et la grande question : « Sont-elles habitables et habitées ? ».

Pour assister à cette conférence, il vous suffit d’aller sur la chaîne Twitch de l’Observatoire de Lyon :

Se connecter

La création d’un compte n’est pas nécessaire, sauf pour pouvoir interagir en direct et poser vos questions à Isabelle Vauglin (il est aussi possible de le faire par mail ou via le compte Twitter de l’Observatoire @obsLyon).

KM3Net : deux observatoires sous-marins ouverts sur les trois infinis

KKM3Net : deux observatoires sous-marins ouverts sur les trois infinis

Cet article est extrait du Pop’Sciences Mag #6 : Océan, une plongée dans l’invisible

Par Caroline Depecker   |   2 juin 2020


Installer un laboratoire, dans les profondeurs abyssales, doté d’équipements capables de détecter autant la matière cosmique que les organismes marins, relève de la prouesse scientifique. Les fonds méditerranéens sont le théâtre de cet exploit, accompli grâce à une large coopération européenne dans le cadre du projet KM3Net.

KM3NeT, ou Kilometre Cube Neutrino Telescope, est un projet européen comprenant deux observatoires permettant de détecter la très faible lumière générée par les neutrinos, en cours d’installation en mer Méditerranée. Leur déploiement final est prévu pour 2026. L’un de ces télescopes sous-marins, baptisé ARCA (Astroparticle Research with Cosmics in the Abyss), arrimé à 3450 mètres de profondeur, au large de la Sicile, est dédié à la recherche de neutrinos de grande énergie[1] provenant de cataclysmes de l’univers tels que des supernovas ou la formation et l’évolution de trous noirs. Il comprendra à terme 230 lignes longues de 700 mètres supportant au total 128 000 capteurs optiques.

Illustration des lignes de détection sous-marine. KM3Net – MEUST – ORCA © Mathilde Destelle

ARCA sera jumelé avec un autre détecteur positionné au large de Toulon : ORCA (Oscillation Research with Cosmics in the Abyss). Immergé à 2500 mètre de fond, celui-ci est optimisé pour traquer les neutrinos de basse énergie[2] en provenance du soleil et de l’atmosphère terrestre. Son objectif : étudier certaines de leurs propriétés, comme leurs oscillations et leurs masses. Une fois achevé, ORCA totalisera 65 000 capteurs optiques répartis sur 115 lignes de détection. Le détecteur compte aujourd’hui six d’entre elles qui montrent un parfait état de fonctionnement.

« Nous sommes contents et soulagés », soufflait fin janvier 2020 Paschal Coyle, physicien au centre de physique des particules de Marseille (CPPM) et responsable scientifique d’ORCA. Le chercheur revenait alors d’une expédition en mer ayant permis d’ajouter deux nouvelles lignes au détecteur. « Positionner des lignes avec une précision d’un mètre, à l’aide d’un robot téléguidé depuis la surface située 2500 mètres plus haut ; tout en sécurisant les connexions électriques lors du branchement des câbles, afin que le signal soit bon… C’est un vrai défi ! » Relevé avec succès. Cette étape réussie a conclu la phase de démonstration du détecteur, qui peut donc continuer à se développer.

 

Un laboratoire sentinelle, témoin de l’état de santé des fonds marins

Tout en ayant ses yeux braqués sur l’infiniment grand de l’espace, ORCA zoome sur l’infiniment petit des particules. Il explore aussi l’infiniment bleu de l’océan. En effet, depuis trois ans, dans le cadre du projet MEUST-NUMerEnv*, ORCA est progressivement équipé d’instruments connectés en temps réel, et mis au service d’études en sciences de la mer, de la terre et de l’environnement. Véritable plateforme d’expérimentations pluridisciplinaires, ORCA a été intégré au réseau d’observatoires sous-marins EMSO (European Multidisciplinary Seafloor and water column Observatory). Les équipements ajoutés sont nombreux. Parmi eux, une ligne instrumentée autonome, baptisée ALBATROSS observe la colonne d‘eau. Elle collecte différentes  données : pression, température, conductivité, oxygène dissous, matières en suspension, courant. ORCA sera également doté de diverses sondes parmi lesquelles la Biocam, qui photographiera les espèces bioluminescentes.

Voir également l’enquête « Les abysses cachent un monde de lumière« , issue du Pop’Sciences Mag #6

Par ailleurs, Bathy-Bot, un robot chenillé bardé de capteurs et de caméras, évoluera à 2400m de profondeur autour de Bathyreef, un récif artificiel déposé sur le fond et dont la forme a été imaginée afin d’y favoriser l’épanouissement de vie marine. Enfin, des hydrophones répartis sur les lignes du détecteur renseignent sur le déplacement de cétacés et autres mammifères marins à proximité. « Les observatoires câblés comme ORCA constituent des sentinelles précieuses car elles fournissent un suivi pluriannuel, continu et en temps réel, de l’état de l’océan,  commente Séverine Martini, océanographe à l’institut Méditerranéen d’Océanologie de Marseille. Elles nous permettent de détecter ses modifications écologiques potentielles, face au réchauffement climatique et aux autres pressions anthropiques ». Et peut-être de les anticiper.

 


Références

[1] Neutrinos dont la puissance énergétique est comprise entre 1 et 10 téraélectronvolt (TeV)
[2] Neutrinos dont la puissance énergétique est comprise entre 3 et 100 gigaélectronvolt

* MEUST-NUMer Env est un projet porté par le CNRS, en partenariat avec Aix-Marseille Université (AMU) et l’université de Toulon (UTLN) et en concertation avec le Centre Européen des Technologies Sous-Marines de l’Ifremer. Son objectif est de développer une plateforme scientifique et technologique mutualisée entre sciences environnementales et astrophysique


Cet article est extrait du Pop’Sciences Mag #6 : Océan, une plongée dans l’invisible

Géologie en astronomie ou astronomie en géologie ?

GGéologie en astronomie ou astronomie en géologie ?

Pour sa deuxième conférence en direct, l’Observatoire de Lyon vous donne rendez-vous avec Pierre Thomas, chercheur au Laboratoire de Géologie de Lyon Terre, Planètes, Environnement – LGL-TPE et professeur à l’ENS de Lyon. Ils vous parlera des impacts et des cratères provoqués par les météorites.  Une conférence entre géologie et astronomie ! 

Pour assister à cette conférence, il vous suffit de vous connecter de chez vous à la chaîne Twitch de l’Observatoire de Lyon. La création d’un compte Twitch n’est pas nécessaire, sauf pour pouvoir interagir en live avec le public et les organisateurs de la conférence.

Vous pourrez également poser vos questions sur le compte Twitter de l’observatoire @obsLyon

>>> Se connecter :

La chaîne Twitch de l’Observatoire de  Lyon

30 ans : bientôt la retraite pour Hubble ?

330 ans : bientôt la retraite pour Hubble ?

Temps de lecture : moins de 5 minutes

Nous sommes le 24 avril 1990, François Mitterand est président de la République, et Retour vers le futur III sortira dans quelques semaines. Au Centre spatial Kennedy, en Floride, la Navette spatiale Discovery s’apprête à lancer le télescope spatial Hubble. 30 ans plus tard, il est toujours opérationnel et s’apprête à passer le relais.

UUn télescope qui ne fait pas son âge

Avec ses 11 tonnes, ses 13 mètres de long et son miroir de 2,4 mètres de diamètre, le télescope spatial Hubble est un bijou de technologie. Son développement a commencé dans les années 1970, et il aura coûté au total deux milliards de dollars.

Si on le compare aux autres satellites, Hubble a eu une grande longévité. En général, les satellites artificiels sont conçus pour durer 15 ans. Et on le comprend, les satellites sont soumis à des bombardements de rayons cosmiques qui accélèrent le vieillissement du matériel.

Photographie du télescope spatial Hubble surplombant la Terre

Vue du télescope spatial Hubble surplombant la Terre / ©NASA

Cette longévité est due à plusieurs mises à niveau de l’appareil (en 1993, 1997, 1999, 2002 et 2009), mais également à un niveau de qualité de fabrication bien supérieur aux appareils fabriqués en série, comme nos imprimantes et lave-vaisselles. En effet, avec un coût de fabrication aussi élevé et des dizaines d’années de développement, l’obsolescence programmée n’a pas lieu d’être en astronomie.

« Hubble est la preuve que nous pouvons faire autrement, que les ingénieurs savent créer des appareils qui durent, une qualité qu’il faudra exploiter dans notre contexte de fragilité éco-systémique, d’épuisement des ressources et de dégradations de l’environnement », confie Isabelle Vauglin, astrophysicienne au Centre de Recherche Astrophysique de Lyon (CRAL).

Et pourtant, Hubble entamera bientôt sa fin de carrière : plusieurs pièces mécaniques sont vieillissantes (par exemple les gyroscopes), et son successeur, le télescope spatial James-Webb, est prévu depuis plusieurs années et sera lancé normalement en mars 2021.

DDes débuts difficiles

Durant les jours suivant le lancement du télescope, les ingénieurs découvrent un problème optique majeur : les photos sont floues ! On comprend rapidement que la myopie de Hubble provient d’un défaut de courbure du miroir. Heureusement, des opérations de maintenance sont possibles et prévues. La première a pu être avancée afin de corriger l’aberration : on lui a installé une paire de « lunettes correctrices ».

Mission de maintenance de Hubble / ©NASA

Ces opérations ont été facilitées par l’orbite basse du télescope (590 km d’altitude), donc accessible par les navettes spatiales. La mission de maintenance de 1993 permet de corriger cette erreur grâce à un dispositif baptisé COSTAR.

Illustration proposant une comparaison entre deux photographies prises par le télescope spatial Hubble, révélant une nette amélioration de la netteté après la maintenance de décembre 1993

Cette comparaison du noyau de la galaxie M100 montre l’amélioration de l’optique du télescope spatial Hubble, avant et après la première mission de maintenance en décembre 1993 / ©NASA

qqui est Hubble ?

Photographie de Edwin Hubble, astronome américain

Edwin Hubble, astronome américain

Le télescope Hubble est nommé en référence à l’astronome américain Edwin Hubble, décédé en 1953.

Il est connu pour avoir démontré que les autres galaxies sont hors de la Voie lactée. Il a utilisé pour cela les étoiles variables Céphéïdes, étudiées par Henrietta Leavitt, ce qui lui a permis de mesurer la distance qui nous sépare de ces galaxies.

Le télescope fait donc référence à cette découverte majeure de l’astronomie, car un des objectifs était d’observer les objets très lointains et d’étudier l’expansion de l’Univers.

AAu fait, Pourquoi des télescopes dans l’espace ?

L’atmosphère protège des rayonnements, certains très nocifs pour les êtres vivants. Les astronomes ont pourtant besoin de toutes les longueurs d’onde pour observer les objets célestes, surtout les plus lointains ! C’est pourquoi un télescope hors atmosphère est très intéressant d’un point de vue scientifique. En orbite autour de la Terre, il échappe au « filtre » de l’atmosphère, et capte bien plus d’informations.

Hubble n’est pas le seul télescope spatial, il en existe d’autres, qui ont chacun leur spécialité (infrarouge, micro-ondes, rayons X, rayonnement gamma, etc.).

Présentation des satellites de l’Agence spatiale européenne en fonction des longueurs d’ondes / ©ESA

Poster de présentation des satellites de l'Agence spatiale européenne

Présentation des satellites de l’Agence spatiale européenne / ©ESA

Est-ce que le nombre de satellites artificiels est un problème pour les astronomes ? Le nombre de satellites commerciaux et de surveillance connaît une augmentation critique pour les astronomes. En effet, ils réduisent significativement les possibilités d’observation du ciel depuis le sol, et en orbite ils représentent un nombre de débris grandissant pour les autres objets en orbite, comme la Station spatiale internationale.

Le projet de satellites Starlink de l’entreprise SpaceX inquiète particulièrement les scientifiques à ce propos. Ce projet vise à mettre en service plus de 12 000 satellites, qui viendraient s’ajouter aux 2 000 actuellement en orbite. En septembre 2019, l’Agence spatiale européenne a déjà dû dévier un de ses satellites scientifiques afin d’éviter une collision avec un satellite de la constellation Starlink. Une pétition contre ce projet a été lancée par l’Union astronomique internationale.

 

Rédaction : Rémi Léger, assistant de communication du LabEx ASLAN

PPour aller plus loin

Hubble : trente ans d’observations spatiales pour éclairer le côté sombre de l’Univers

HHubble : trente ans d’observations spatiales pour éclairer le côté sombre de l’Univers

Télescope Hubble en orbite

Télescope Hubble / ©European Space Agency

Mis en orbite par la navette spatiale américaine Discovery, le télescope Hubble a ouvert ses yeux dans l’espace le 25 avril 1990. Les informations livrées par la qualité inédite de ses images a permis des avancées majeures en cosmologie. Parmi elles, la découverte de l’énergie noire, une force mystérieuse à l’œuvre dans l’expansion de l’Univers. 

Pour en savoir plus sur le sujet, une nouvelle sonde, baptisée Euclid, sera bientôt lancée.

Un article rédigé par Caroline Depecker, journaliste, pour Pop’Sciences – 16-04-2020

Cela fait 30 ans qu’il orbite à plus de 600 kilomètres au-dessus de nos têtes : avec son miroir principal de 2,4 mètres, le Hubble Space Telescope (HST) est le plus grand télescope spatial jamais lancé. Grâce à une série de cinq missions de réparation et de maintenance impliquant des astronautes des agences spatiales américaine et européenne, il nous offre encore aujourd’hui de magnifiques images d’objets célestes : des planètes jusqu’aux lointaines galaxies, des étoiles, depuis leur naissance jusqu’à leur mort.

« Hubble a dominé l’astronomie moderne des années 90 » , commente Yannick Copin, enseignant-chercheur en cosmologie observationnelle à l’Institut de physique des deux infinis de Lyon – IP2I. « Sa facilité à distinguer de tout petits détails, qu’on appelle résolution optique, de 0,1 seconde d’arc et la profondeur de son champ d’observation, c’est-à-dire sa capacité à voir des objets lointains et peu brillants, faisaient de lui l’instrument le plus performant pour l’observation spatiale. »

Aujourd’hui, les télescopes de plus de huit mètres déployés au sol, comme le Very Large Telescope de l’ ESO1, peuvent proposer des images de meilleure qualité lorsqu’il s’agit d’acquérir des informations sur des objets lointains. Mais Hubble garde le regard le plus perçant. « Ses données restent de référence lorsqu’il s’agit de calculer la position d’une étoile avec précision. Sa très haute résolution a d’ailleurs été à l’origine d’un projet clef du télescope spatial, à savoir déterminer la valeur de la constante de Hubble, dite « H0 »,qui reflète le taux actuel d’expansion de l’Univers ». Une valeur qui diffère selon les méthodes employées par les scientifiques, ce qui remet en cause, ni plus ni moins, la façon dont on le décrit.

Un univers gâteau gonflant au four

Pour comprendre, faisons un petit retour en arrière. Le télescope spatial doit son nom à l’astronome américain Edwin Hubble qui, grâce à l’observation de galaxies lointaines, a montré à la fin des années 20, avec le belge Georges Lemaître, que l’Univers est en expansion : il ne cesse « d’enfler ». Les astres s’éloignent les uns des autres, comme les raisins secs d’un gâteau gonflant au four. Une double révolution conceptuelle a lieu ! « On s’aperçut alors que la Voie lactée était un tout petit morceau de l’Univers et non l’Univers lui-même. Qui plus est, celui-ci n’était pas statique, figé… comme on le pensait jusqu’alors », précise le cosmologiste.

Constater l’expansion de l’Univers signifie que son passé est différent de son présent et que les physiciens peuvent reconstituer son histoire. La cosmologie était née.

Galaxie spirale NGC 4603, la galaxie la plus lointaine dans laquelle une classe spéciale d’étoiles pulsantes appelées variables céphéides ont été trouvées. / ©Jeffrey Newman (Univ. of California at Berkeley) and NASA/ESA

Très vite, connaître ce taux d’expansion est apparu essentiel : si l’on sait, en effet, à quelle vitesse s’éloignent deux astres distants d’un mégaparsec (Mpc), soit 3,3 millions d’années-lumière, on peut, en remontant le temps, déterminer l’âge de l’Univers. Pour calculer H0, deux valeurs doivent être déterminées : la vitesse à laquelle un astre nous fuit et la distance qui nous sépare de lui. Pour ce faire, avec les moyens observationnels limités de l’époque, E. Hubble et G. Lemaître ont observé des céphéides, des étoiles qui constituent des « chandelles standard » en astrophysique, car leur éclat, variable dans le temps, est connu.

« Leurs calculs étaient plutôt grossiers, du fait de mesures de distance largement entachées d’erreurs », commente Yannick Copin. « Les premières estimations de H0 étaient comprises ainsi entre 500 et 600 (km/s)/Mpc, soit huit fois plus que la valeur admise actuelle ».

Au milieu du XXe siècle, les calculs se sont affinés et les scientifiques ont estimé que chaque Mpc se dilatait à raison de 50 à 100 km/s, ce qui aboutissait à un cosmos âgé de 10 à 15 milliards d’années. Mais au-delà de l’âge de l’Univers, dont les scientifiques s’accordent aujourd’hui pour dire qu’il est de 14 milliards d’années, c’est sur cette base que les astronomes ont bâti le premier modèle cosmologique.

Quand les étoiles s’éloignent de plus en plus vite

Puisque l’Univers est en expansion, à ses toutes premières secondes il devait être extrêmement dense et chaud, phase qui a pris le nom de Big Bang et qui constitue son acte de naissance. Se retroussant les manches, les théoriciens ont étoffé le modèle moyennant des arrangements un peu énigmatiques. Tout d’abord, pour rendre compte de la vitesse élevée d’étoiles situées en périphérie de galaxies, ils ont proposé l’existence d’une « matière noire2 », une masse dont on ignore la nature, mais qui intervient par son effet gravitationnel.

Par ailleurs, il y a deux décennies, ils ont dû ajouter un nouvel ingrédient : « l’énergie noire », une force répulsive mystérieuse responsable de l’accélération de l’expansion de l’Univers. A la base de cette ajout, les travaux, en 1998, de deux équipes d’astrophysiciens menés respectivement par Saul Perlmutter, du laboratoire national Lawrence Berkeley, et dAdam Riess3, de l’Université John Hopkins (États-Unis). Scrutant des étoiles en cours d’explosion, appelées supernovae, les scientifiques sont arrivés à la conclusion que celles-ci étaient plus éloignées que supposées ! Une découverte qui leur a valu le Prix nobel de physique en 2011.

Détail de la nébuleuse Veil : nuage de gaz en cours de formation après l'explosion d’une étoile massive.

Détail de la nébuleuse Veil : nuage de gaz en cours de formation après l’explosion d’une étoile massive. / ©NASA-ESA-Hubble Heritage Team

La constante de Hubble porte mal son nom. « Sa valeur est identique quel que soit l’endroit de l’Univers », explique le chercheur de l’IP2I, « mais elle évolue avec le temps. Tout ce qui nous est accessible, c’est sa valeur actuelle, une donnée primordiale, car elle sert de point d’ancrage pour reconstuire l’évolution du cosmos ainsi que son contenu ».

En 2001, grâce aux données transmises par le télescope Hubble, un groupe de recherche international4 a estimé la valeur de H0 à 72 ± 8 (km/s)/Mpc. La précision recherchée, et atteinte, était de 10%. Depuis, celle-ci s’est améliorée et d’autres calculs ont été faits : la mesure la plus précise, obtenue en utilisant les céphéides, les supernovae et le télescope Hubble, a été publiée par Adam Riess et son équipe, en mars 2019. Elle est de 74,03 ± 1,4 (km/s)/Mpc.

L’expansion de l’Univers : source de tensions entre cosmologistes

Sans passer par l’observation d’astres lointains, il est encore possible de déterminer indirectement le taux actuel d’expansion de l’Univers en exploitant les informations contenues dans le « fond diffus cosmologique » : c’est ainsi qu’a été appelée la toute première lueur émise dans l’Univers, près de 400 000 ans après le Big Bang, d’après le modèle en vigueur. L’étude de cette lumière a été la mission du satellite Planck de l’ESA, Agence spatiale européenne. Suite à l’analyse des données, les scientifiques ont établi, en 2018, la constante de Hubble à 67,4 ± 0,5 (km/s)/Mpc. C’est la valeur la plus précise à ce jour. Les données de Planck ont encore permis de dresser le portrait de l’Univers : l’énergie noire compterait pour 69,2 % de son contenu, la matière noire pour 25,9% tandis que la matière ordinaire représenteraient seulement 4,9%.

Ainsi, les méthodes qui ont recours à l’observation avancent une constante de Hubble avec une valeur haute. Celles qui s’appuient sur le modèle cosmologique, une valeur basse. L’écart de 10 % entre les estimations constitue un véritable « gouffre » pour les physiciens, source de tensions et de débats. « Certains biais de mesure existent dans les observations proches », commente Yannick Copin. Si on les corrige, les valeurs obtenues se rapprochent de la valeur de Planck sans toutefois l’égaler.

« C’est un véritable problème : il y a quelque chose que nous ne comprenons pas dans le modèle cosmologique. Modifier la répartition entre l’énergie noire et la matière ne suffira pas, il va nous falloir repenser les équations qui le sous-tendent ».

Les esprits s’échauffent, chacun y allant de son bricolage théorique pour sortir de l’impasse.

Ultraviolet Coverage of the Hubble Ultra Deep Field / ©NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

« Casser le modèle actuel ? Enthousiasmant ! »

La solution viendra peut-être du télescope spatial européen Euclid sur lequel travaille le physicien de l’IP2I. Euclid est en cours de construction, son lancement est prévu pour 2022. Pièce majeure du programme « Cosmic Vision » de l’ESA, sa mission est prévue pour une durée de six ans : elle vise à étudier les composantes sombres de l’univers, à savoir la matière et l’énergie noires. Pour cela, il utilisera les effets de distorsions gravitationnelles qui fournissent une mesure directe de la distribution de la matière dans l’Univers. Grâce à ses deux instruments fonctionnant en lumière visible et l’autre dans l’infrarouge, il cartographiera la forme, la luminosité et la distribution en trois dimensions de deux milliards de galaxies5. Son regard balaiera un tiers de l’ensemble du ciel et permettra de remonter 10 milliards d’années dans le temps, couvrant la période où l’énergie noire a joué un rôle significatif dans l’accélération de l’expansion de l’Univers, soit les deux derniers milliards d’années.

Nébuleuse Tête de cheval

Nébuleuse Tête de cheval / ©NASA, ESA, and the Hubble Heritage Team (AURA/STScI)

L’attente est grande du côté de Lyon :

« Si Euclid confirme tout ce qui a été déjà mesuré par le passé, ce sera une petite déception. Par contre, si ses observations divergent, alors on pourra casser le modèle cosmologique existant pour en imaginer un nouveau, avec de bonnes bases. Et là, ce sera enthousiasmant ! » conclut Yannick Copin.

 

 

 

 

——————————————————–

Notes :

(1)European Southern Observatory, Observatoire européen austral

(2) – Matière sombre, Futura Sciences

(3) – Measurements of Omega and Lambda from 42 High-Redshift Supernovae, S. Permulter et coll., Cornel University, 8 déc. 1998

(4) – Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, Wendy L. Freedman et coll., The Astrophysical Journal, 19 déc. 2000

(5) – Galaxie, Futura Sciences

PPour aller plus loin

Nébuleuse NGC 2174 dite Tête de singe/ ©NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

 

Aux confins de l’Univers grâce à Hubble

AAux confins de l’Univers grâce à Hubble

Depuis son lancement en 1990, le télescope spatial Hubble nous envoie des images du ciel d’une très grande qualité et qui renferment une mine d’informations pour les astronomes. 

L'étoile la plus distante jamais observée

L’étoile la plus distante jamais observée / ©NASA – ESA – Johan Richard

C’est le cas pour les équipes de l’Observatoire de Lyon qui travaillent sur les observations fournies par Hubble d’amas de galaxies, ces observations permettant de repousser les « limites » de l’Univers et trouver des galaxies très très lointaines…

Plusieurs résultats récents ont pu être obtenus sur la formation de ces premières galaxies et leur évolution, grâce au programme Hubble des Champs Frontières, qui utilisent un effet appelé « lentille gravitationnelle » pour repousser les limites des observations.

Johan Richard, chercheur au Centre de Recherche Astrophysique de Lyon – CRAL, vous propose une rétrospective de ces découvertes…

AA lire

AA voir – A écouter

Galaxies naines

Galaxies naines / ©NASA – ESA – Johan Richard

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPour aller plus loin

Le télescope spatial Hubble fête ses 30 ans

LLe télescope spatial Hubble fête ses 30 ans

Vendredi 24 avril, le Planétarium met le télescope Hubble à l’honneur sur ses pages Facebook, Twitter et Instagram. Image-mystère, anecdotes, actualité et futur du télescope, mission de la « Space Academy @home », intervention de l’astrophysicienne Sandrine Codis lors de la session « Astronomer @home »…
Découvrez l’histoire de ce télescope, qui a permis des avancées spectaculaires pour la science, et qui a néanmoins connu de nombreuses péripéties !
A suivre de 9h à 17h :
  • Facebook : Planetarium.Vaulx.en.Velin
  • Twitter : PlanetariumVV
  • Instagram : leplanetariumvv

Planétarium Vaulx-en-Velin

EEn savoir plus sur Hubble