Pop’Sciences répond à tous ceux qui ont soif de savoirs, de rencontres, d’expériences en lien avec les sciences.

EN SAVOIR PLUS

Ressources scolaires

Ressources

Article

Écoles d'ingénieurs / Lycée

LLa photocatalyse promise à un avenir radieux | #4

Grain d'oxyde de titane. Photographie prise au microscope électronique à balayage. UMR5635 Institut européen des membranes © Didier COT / CNRS Images

Ressource #4 du dossier Pop’Sciences – CNRS : « ANNÉE DE L’INGENIERIE – Quand l’ingénierie façonne la recherche scientifique » ARTICLE 

Méthode permettant d’accélérer une réaction chimique grâce à l’absorption de la lumière, la photocatalyse peut trouver des applications dans bien des domaines. Depuis plus d’une décennie, des chimistes lyonnais s’efforcent d’améliorer les performances de ce procédé catalytique dans le but de faire émerger de nouvelles applications dans le traitement des eaux usées et la production d’hydrogène vert.

Grain d’oxyde de titane. Photographie prise au microscope électronique à balayage. © Didier COT / CNRS Images

Composants clés de l’industrie électronique, les semi-conducteurs sont devenus indispensables au fonctionnement de nos ordinateurs et de nos smartphones. Le développement de nombreuses autres technologies comme le solaire photovoltaïque dépendent également de l’utilisation de ces matériaux présentant une conductivité électrique intermédiaire située entre les matériaux isolants et les métaux. Si le silicium reste de loin le semi-conducteur le plus répandu, il existe bien d’autres matériaux disposant d’aptitudes similaires. C’est par exemple le cas de l’oxyde de titane (TiO2), un semi-conducteur privilégié pour effectuer les réactions de photocatalyse. Au sein de l’Institut de recherche sur la catalyse et l’environnement (Ircelyon)1 le chimiste CNRS Gilles Berhault étudie depuis plusieurs années la possibilité d’activer le TiOà partir d’une source lumineuse. Ainsi irradié, le semi-conducteur produit des espèces chimiques actives, pouvant notamment servir à éliminer les polluants contenus dans les eaux usées provenant d’un hôpital. Outre ce domaine de recherche lié à la dépollution de notre environnement, initialement exploré par les scientifiques du laboratoire, des travaux débutés plus récemment visent à étudier la possibilité de produire également de l’hydrogène en faisant interagir ce même semi-conducteur à base de TiO2 avec la lumière.

De nouvelles espèces chimiques très actives

Bien que ces deux perspectives d’application puissent sembler très éloignées l’une de l’autre, elles reposent pourtant sur le même principe. « L’irradiation d’un semi-conducteur par une source lumineuse provoque l’éjection d’un électron de sa bande de valence vers sa bande de conduction2 , explique le scientifique. Cela donne lieu à la formation d’une lacune appelée trou se comportant comme une charge positive dans la bande de valence de l’atome ayant perdu l’électron tandis que cette particule chargée négativement rejoint la bande de conduction. » C’est finalement par la création de ces deux nouvelles espèces chimiques très actives, que les scientifiques nomment « paires électron-trou », que des réactions susceptibles de dégrader des polluants ou de produire de d’hydrogène peuvent émerger. Ces paires électron-trou nouvellement créées ont toutefois tendance à se recombiner continuellement les unes avec les autres. Or ces phénomènes de recombinaison réduisent de manière drastique l’activité du semi-conducteur. Afin de renforcer la stabilité des paires électron-trou, l’équipe de Gilles Berhault a donc testé la possibilité d’adjoindre au semi-conducteur TiO2 un composant ferroélectrique.

Stimuler la photocatalyse en combinant les matériaux

Cette classe de matériaux a en effet tendance à se polariser spontanément, ce qui se traduit par une séparation permanente des charges électriques positives et négatives au niveau de la structure macroscopique du matériau. Les électrons produits dans un semi-conducteur combiné à un ferroélectrique vont alors avoir tendance à se diriger vers la partie de ce matériau chargée positivement. Dans le même temps, les lacunes, qui sont chargées positivement, vont être attirées vers sa partie chargée négativement. « Parce qu’il contribue à éloigner l’électron du trou qu’il a laissé dans la bande de valence, l’ajout d’un élément ferroélectrique permet de limiter le processus de recombinaison. Les paires électron-trou étant alors davantage disponibles pour participer à la réaction de photocatalyse, l’efficacité de cette dernière est censée augmenter de façon significative », souligne Gilles Berhault.

Pour le vérifier, les chimistes lyonnais ont eu recours à du titanate de baryum (BaTiO3). Ce matériau cristallin à la structure cubique présente deux phases distinctes : une où il est ferroélectrique et une autre où il ne l’est pas. Le fait que le BaTiO3 existe sous ces deux formes permet ainsi de mesurer le bénéfice du caractère ferroélectrique lors d’une réaction de photocatalyse. Après avoir déposé du TIO2 sur des échantillons de BaTiO3 appartenant à chacune des deux catégories, l’équipe a exposé ces matériaux hybrides à un rayonnement ultraviolet.

Photocatalyse: produire de l’hydrogène vert grâce à la lumière © Emilie Josse

La photo-thermo-catalyse se profile à l’horizon

Un premier protocole expérimental destiné à mesurer l’apport de la ferroélectricité dans la dégradation de polluants, s’est déroulé en présence d’acide formique3. Une analyse menée en parallèle a également permis d’estimer la production d’hydrogène à partir de ces mêmes matériaux hybrides : « En ce qui concerne la dégradation des polluants, les systèmes combinant le semi-conducteur avec un ferroélectrique se sont avérés jusqu’à 2,5 fois plus actifs que les systèmes non-ferroélectriques. Pour le volet production d’hydrogène, ces mêmes systèmes ferroélectriques ont démontré une activité jusqu’à vingt fois supérieure aux systèmes qui ne disposaient pas de cette propriété », détaille Gilles Berhault. De premières études visant à estimer le niveau de rendement d’un tel procédé employé à des fins de production d’hydrogène laissent entrevoir une multiplication par cinq à dix par rapport aux méthodes actuellement utilisées en photocatalyse.

Réacteur photocatalytique fonctionnant sous température (120°C) et pression (5 bars) pour la production d’hydrogène – Le réacteur est illuminé par le bas à partir d’une lampe LED Philips PL-L 18W UVA © Gilles Berhault

Dans le but d’augmenter encore ce gain de productivité, une nouvelle approche scientifique est d’ores et déjà envisagée par les chimistes de l’Ircelyon. Celle-ci consiste à combiner un ferroélectrique avec un TiO2 et un MXène4. Disposant à la fois d’une bonne conductivité électrique et d’une bonne conductivité thermique, les MXènes sont à même d’augmenter le transfert de chaleur ajouté à un processus de photocatalyse et lui permettre ainsi de fonctionner encore plus efficacement. « La principale difficulté de ce nouvel axe de recherche qui vise à recourir à la photo-thermo-catalyse pour atteindre un niveau de production d’hydrogène encore plus élevé sera de parvenir à faire fonctionner en synergie les gains positifs associés à chacun de ces trois matériaux », précise Gilles Berhault.

Si les scientifiques parviennent à relever ce défi, l’utilisation de ce procédé pour produire de l’hydrogène vert pourrait notamment être envisagée à partir des déchets végétaux générés par une exploitation agricole dans la perspective d’assurer son autonomie  .

Article rédigé par Grégory Fléchet, journaliste scientifique – janvier 2026

—————————————————————

1 Unité CNRS/Université Claude Bernard Lyon 1

2 La bande de valence correspond à la bande d’énergie où se situent les électrons contribuant à la cohésion entre atomes voisins au sein d’un même matériau solide. Dans un semi-conducteur, la bande de valence est relativement proche d’une autre bande d’énergie appelée bande de conduction dans laquelle certains électrons peuvent migrer lorsque le matériau est soumis à un apport d’énergie par chauffage, application d’un champ électromagnétique ou irradiation lumineuse.

3 Ce composé organique est une molécule modèle employée pour déterminer la capacité d’un photocatalyseur à éliminer des polluants présents en milieu aqueux. La dégradation de l’acide formique correspond en effet à l’étape ultime de minéralisation (dégradation complète) d’une vaste famille de polluants présentant des caractéristiques similaires à l’acide formique.

4 Composés bidimensionnels en forme de feuillets découverts en 2011, les MXènes disposent d’un large éventail de propriétés en raison de la grande variété d’atomes susceptibles de les constituer.

 

Ces recherches ont été financées en tout ou partie, par l’Agence Nationale de la Recherche (ANR) au titre du projet ANR-APRICOT-AAPG2022. Cette communication est réalisée et financée dans le cadre de l’appel à projet Sciences Avec et Pour la Société – Culture Scientifique Technique et Industrielle pour les projets JCJC et PRC des appels à projets génériques 2022 (SAPS-CSTI-JCJ et PRC AAPG 22).