LLe prix Nobel de Physiologie 2024 Le Prix Nobel de physiologie 2024 a été remis aux Dr. Victor Ambros et Gary Ruvkun pour la découverte d’un nouveau moyen de régulation de l’expression des gènes dans nos cellules. Ces deux chercheurs ont découvert un nouveau type de molécule: les microARN, et on montré comment ils fonctionnent. Aujourd’hui, dans cette vidéo, l’équipe de « Du Neuf Docteur ? » vous explique pourquoi ils ont obtenu le Prix Nobel. #duneufdocteur #mediationscientifique #vulgarisationscientifique #nobel #physiologie #ARN #gène #prixnobel
MMars : découverte d’un ancien environnement propice à l’émergence de la vie Le Rover Curiosity de la mission Mars Science Laboratory explorant les strates sédimentaires du cratère Gale ©NASA/JPL-Caltech/MSSS Notre groupe de recherche publie aujourd’hui dans Nature les premières preuves tangibles de l’existence passée et durable d’environnements à la surface de Mars particulièrement favorables à la synthèse spontanée des premières molécules de la biologie nécessaires à l’émergence de la vie.Nous avons découvert des structures fossiles témoins de cycles répétés et durables de séchage-mouillage de sédiments très anciens de la surface de Mars. Ce mode alternatif sec-humide promeut la concentration et polymérisation de molécules organiques simples (sucres ou acides aminés) qui pourraient avoir été contenues dans les sédiments. Ces processus constituent une étape fondamentale vers la synthèse de molécules biologiques tels que les acides nucléiques (ADN ou ARN).La question qui préoccupe les scientifiques n’est pas tant de savoir si la vie a existé sur une autre planète que la Terre, mais bien de connaître où et comment la vie telle que nous la connaissons sur Terre s’est construite.Depuis le milieu des années 1980, les biochimistes ont reconnu que le monde ARN fut une étape préliminaire fondamentale sur la route de la vie. L’ARN aurait constitué la molécule originale autocatalytique et porteuse de l’information génétique, avec des fonctions enzymatiques assurées par les ARNs courts. Les protéines auraient ensuite supplanté les ARNs comme enzymes en raison d’une plus grande diversité, et l’ADN remplacé l’ARN comme molécule porteuse de l’information génétique en raison d’une meilleure stabilité.Pour accéder au monde ARN qui est une molécule complexe il a été nécessaire de construire un enchaînement de type polymère de ribonucléotides, chacun étant composé d’un groupe phosphate, d’un sucre (le ribose) et d’une base azotée (adénine par exemple).Ainsi, l’émergence de formes de vie primitives telle qu’elle est conçue actuellement par les scientifiques, nécessite d’abord des conditions environnementales favorables à l’agencement spontané de molécules organiques simples en molécules organiques plus complexes.Des structures datées de 3,7 milliards d’annéesNous rapportons dans cet article des observations inédites transmises par l’astromobile (ou « rover ») Curiosity qui, équipé d’instruments analytiques des paysages et de la chimie et minéralogie des roches, explore depuis 2012 les pentes du Mont Sharp à l’intérieur du cratère Gale.Lors des « sols » (jours martiens) 3154 à 3156 en juin 2021, nous avons découvert des structures singulières, exhumées au toit d’anciennes couches sédimentaires datées d’environ 3,7 milliards d’années.Ces structures sont des rides rectilignes qui apparaissent en relief de quelques centimètres à la surface supérieure de strates sédimentaires. Ces rides vues par le haut sont jointives et sont organisées selon une géométrie parfaitement polygonale. Elles sont constituées dans le détail par l’alignement de petits nodules plus ou moins attachés les uns aux autres de roches essentiellement sulfatées. Un nodule est une petite bille qui apparaît en relief dans et à la surface des strates.Motif fossile de rides polygonales observées et analysées par Curiosity au 3154ᵉ jour de sa progression dans les strates sédimentaires du cratère de Gale sur Mars. ©NASA/JPL-Caltech/MSSS/IRAP/LGL-TPECes structures polygonales représentent fondamentalement des « fentes de dessiccation », structures ô combien familières aux géologues, et similaires à celles que chacun a observées sur le fond d’une flaque d’eau boueuse asséchée. L’eau initialement contenue dans les sédiments s’évapore sous l’effet du vent et de la chaleur. Les sédiments se déshydratent et se contractent alors, engendrant ce système de fentes de retrait qui s’organise en polygones jointifs.Des fentes de dessiccation fossiles ont déjà été ponctuellement documentées à la surface de Mars. Mais celles découvertes ici sont clairement différentes du fait de trois « détails » particuliers :Le motif polygonal est un motif en Y, formant des hexagones jointifs de type « tomette », avec des angles avoisinant 120° aux points de jonction des fentes ;Les fentes de retrait sont ici remplies de minéraux sulfatés (sulfate de calcium et magnésium) ;Ces motifs polygonaux s’observent de manière récurrente sur une épaisseur totale de 18 mètres de la colonne sédimentaire.De nombreux cycles de mouillage-séchageSelon divers travaux expérimentaux menés dans les laboratoires terrestres sur des bacs à boue, ce motif en Y des jonctions des fentes est caractéristique de cycles répétés de séchage-mouillage du sédiment. Au premier séchage, les fentes de retrait s’organisent en T, formant un motif de type « carreau » avec des angles d’environ 90° aux points de jonction. Au fur et à mesure des cycles expérimentaux mouillage-séchage, les fentes se « fatiguent », et montrent des angles typiquement en Y à 120° au bout du 10e cycle.Les sulfates sont des roches sédimentaires chimiques dites évaporitiques, c’est-à-dire résultant de la précipitation de saumures associée à l’évaporation d’eau saline. Leur présence au sein des fentes de retrait conforte l’interprétation de celles-ci en termes de fentes de dessiccation. Les nodules qui portent les sulfates sont très irréguliers en morphologie et en composition chimique, ce qui suggère également plusieurs phases de précipitation (séchage) – dissolution (mouillage) partielle des nodules.Le fait que l’on retrouve à plusieurs reprises ces motifs polygonaux sur une épaisseur de 18 mètres d’empilement vertical des strates sédimentaires indique que cet ancien environnement de dépôt, sujet à des cycles climatiques certainement saisonniers de mouillage-séchage, s’est maintenu sur une période de plusieurs centaines de milliers d’années.Le sens ultime de la découverteCes cycles climatiques saisonniers de mouillage-séchage des sédiments ont potentiellement permis aux molécules simples contenues dans ces mêmes sédiments d’interagir à différentes concentrations dans un milieu salin, et ce de manière répétée et durable.Ce potentiel de polymérisation des molécules simples au sein des sédiments montrant les structures polygonales prend un sens particulier sachant que celles-ci contiennent d’une part des minéraux argileux de la famille des smectites et d’autre part une quantité significative de matière organique. Les smectites sont des argiles dites « gonflantes » pour lesquelles il a été montré expérimentalement qu’elles ont la faculté d’adsorber et de concentrer les nucléotides entre leurs feuillets constitutifs. L’instrument SAM (Sample at Mars) a par ailleurs révélé la présence au sein de ces mêmes strates de composés organiques simples tels que des chlorobenzènes, des toluènes ou encore différents alcanes. Ces composés sont probablement d’origine météoritique, et leur quantité résiduelle peut atteindre environ 500 g. par m3 de sédiments. Ces molécules ont pu dès lors servir comme certaines des « briques de base » de molécules plus complexes telles que l’ARN.En résumé, nous déduisons de nos observations, de nos mesures sur Mars, et des différents concepts et expériences terrestres, que le bassin évaporitique de Gale a constitué un environnement très favorable et durable au développement de ce processus de polymérisation des molécules organiques simples en molécules plus complexes nécessaires à l’émergence de la vie.Nous savons enfin que les structures ici étudiées se situent dans une unité géologique de transition verticale depuis une formation plus ancienne riche en argiles vers une formation plus récente riche en sulfates, et que cette même transition a été détectée par voie orbitale en de nombreux cratères et plaines de Mars.En conséquence, il apparaît désormais que la probabilité que des précurseurs moléculaires biotiques aient pu se former et être fossilisés à la surface de Mars il y a environ 3,7 milliards d’années au cours de l’Hespérien n’est plus négligeable.Vers un retour des échantillons martiens ?Le paradigme actuel pour la vie terrestre est celui d’une émergence dans l’Hadéen, période de temps initiale comprise entre la formation de la Terre il y a environ 4,6 milliards d’années (Ga) par l’accrétion des météorites primitives et environ 4,0 – 3,8 Ga. Mais le plus vieux et seul témoin d’un possible processus biologique hadéen est un graphite (carbone) inclus dans un minéral de zircon daté à 4,1 Ga, ou encore un schiste noir métamorphisé, daté à 3,8 – 3,7 Ga. De plus, l’Hadéen ne comporte actuellement qu’une infime proportion de représentants rocheux à la surface de la Terre en raison de la tectonique des plaques, et en tous cas aucune roche sédimentaire intacte, non métamorphisée. Ceci rend cette quête sous nos pieds d’une vie terrestre primitive a priori vaine.Contrairement à la surface de la Terre, celle de la planète Mars n’est pas renouvelée, ni transformée par la tectonique des plaques. La surface de Mars a ainsi préservé quasi intactes des roches très anciennes, incluant celles formées dans un environnement et un climat propices à la construction spontanée de précurseurs moléculaires biotiques. En conséquence, autant il semble très peu probable que la vie ait pu évoluer sur Mars aussi fertilement que sur Terre – à ces environnements favorables à l’émergence de la vie à l’Hespérien ont fait suite des environnements arides et froids de l’Amazonien), autant il apparaît désormais possible et opportun d’y explorer l’origine de la vie, et d’y rechercher des composés biotiques précurseurs par le biais de retours d’échantillons prélevés dans le futur par des robots ou des astronautes sur des sites tels que ceux étudiés ici.Notre découverte ouvre de nouvelles perspectives de recherche sur l’origine de la vie, y compris (surtout) sur d’autres planètes que la nôtre. Elle est à même également de faire reconsidérer les objectifs premiers des missions d’exploration de la planète Mars et celles en particulier du retour d’échantillons.Auteur : Gilles Dromart, Professeur de géologie, École Normale Supérieure de Lyon – 9 août 2023.Cet article est republié à partir de The Conversation sous licence Creative Commons.>> Lire l’article original sur le site :The conversation
CComment améliorer l’efficacité des vaccins ? L’arrivée des vaccins à ARN messager et leur utilisation massive face au SARS-CoV-2 ont apporté de nouvelles données sur la qualité de la réponse immunitaire. Selon l’immunologue Stéphane Paul, il pourrait être plus efficace de combiner différents types de vaccins, mais aussi de les administrer autrement… Explications dans ce podcast issu de la série La parole à la science du CNRS. Intervenant : Stéphane Paul, professeur d’immunologie à l’Université Jean Monnet, praticien hospitalier au CHU de Saint-Étienne, responsable d’équipe au Centre international de recherche en infectiologie à Lyon, et membre du comité scientifique Vaccins Covid-19.
RRecourir au vaccin ? Les clés pour comprendre. Partie 2: des différentes techniques vaccinales à l’évaluation de leur efficacité Article #2 du dossier Pop’Sciences « De la variole à la Covid, les vaccins…« Deux millions. Ce chiffre représente, d’après l’Organisation mondiale de la santé, le nombre de vies sauvées chaque année grâce la vaccination dans le monde. En protégeant chaque personne vaccinée contre une infection, l’administration d’un vaccin est bénéfique sur le plan individuel. Elle l’est aussi sur le plan collectif en réduisant le nombre de personnes susceptibles de disséminer la maladie.Mais quels sont les différents techniques vaccinales existantes ? Et comment sait-on si elles fonctionnent ?Hélène Dutartre, chercheuse au Centre International de Recherche en Infectiologie (CIRI) et Nathalie Davoust-Nataf, chercheuse au Laboratoire de Biologie et de Modélisation de la Cellule (LMBC) nous apportent leur éclairage. Toutes deux animent le groupe « Microbes, Immunité & Vaccination » associant scientifiques et enseignants lyonnais.Un article de Caroline Depecker, journaliste scientifiquepour Pop’Sciences – 2 juin 2021 Les différents types de vaccinsLe vaccin cherche à stimuler l’immunité adaptative. Pour cela, l’astuce consiste à présenter la « carte d’identité » du pathogène, soit la partie de celui-ci que les défenses de l’organisme reconnaissent comme la signature de l’intrus : son antigène*. Celui-ci prend généralement l’aspect d’une protéine, parfois aussi celle d’un sucre complexe.Il existe plusieurs méthodes pour présenter cette carte d’identité-antigène à l’organisme :– les premières à avoir été mises au point, bien connues, dominent. Ce sont les vaccins vivants atténués et les vaccins entiers inactivés ;– tandis que d’autres sont plus novatrices. Elles comprennent les vaccins en sous-unités protéiques, les vaccins recombinants encore appelés « à particules pseudo-virales » et les vaccins à vecteur viral ;– la dernière génération de vaccins, apparue sur le marché de la santé humaine l’année dernière avec la pandémie Covid, comprennent les vaccins à base de matériel génétique, dits « à ARN* ».En quoi cela consiste ? 1. vaccin vivant atténué – Ou – vaccin inactivé – l’activité d’un virus est réduite grâce à l’insertion de mutations – Ou – le virus est rendu inerte grâce à des traitements chimique ou thermique– exemples : vaccin combiné contre la rougeole, oreillons et rubéole (ROR), vaccins Covid Sinovac et Sinopharm2. vaccin à sous-unité protéique – il s’agit d’un antigène artificiel– exemples : vaccin contre l’hépatite B, vaccin Covid Novavax 3. vaccin recombinant ou particule pseudo virale– plusieurs protéines artificielles miment la forme du virus– exemples : vaccin contre le papillomavirus humain 4. vaccin à vecteur viral – un virus vecteur non pathogène contient l’ADN* permettant la production de l’antigène– exemples : vaccin contre Ebola, vaccins Covid Astrazeneca, Sputnik, Janssen 5. vaccin à ARNm– l’ARN messager d’un antigène est mis dans une vésicule– exemples : vaccins Covid Moderna et PfizerNote crédits : ces infographies ont été réalisées par Marine Tronchon, Emile Dorchies, Amandine Chantharath et Antonin Chenel, dans le cadre d’un projet d’étude en médiation scientifique (licence de biologie, ENS Lyon) portant sur réalisation d’un jeu de plateau (The Vaccinator) sensibilisant à la vaccination.Toutes ces approches possèdent des inconvénients et des avantages en matière de coût, de sécurité ou de difficulté de mise en œuvre.La composition d’un vaccinLe vaccin est un médicament particulier. En effet, il s’adresse généralement à des gens en bonne santé pour un bénéfice individuel. Mais, comme pour tout médicament, la formulation d’un vaccin comprend des produits autres que le principe actif, qui ici est l’antigène. Dans la liste des ingrédients accompagnant l’antigène, outre de l’eau (ou une solution saline), on trouve en quantité limitée et très contrôlée :– des traces d’antibiotique dans certains cas. Elles constituent des reliquats de l’antibiotique utilisé pendant la phase de production afin d’éviter les contaminations bactériennes et qui est normalement éliminé lors du processus de fabrication.– des conservateurs et/ou des stabilisants (ex : saccharose, formaldéhyde, alcool…). Ces composés maintiennent la qualité du vaccin dans le temps et préviennent l’apparition de champignon ou bactérie indésirable– un adjuvant. Cette substance n’est pas systématique. Elle est ajoutée pour augmenter l’efficacité de certains vaccins (exemple des vaccins protéiques) en stimulant la réponse immunitaire. Parmi les adjuvants connus, on retrouve le phosphate de calcium, le squalène (huile issue du foie des requins) et les sels d’aluminium. L’association entre les sels d’aluminium, utilisés depuis les années 1920, et la survenue d’une maladie rare, la « myofasciite à macrophages », chez des adultes prédisposés génétiquement a été suspectée à partir des années 2000. A ce jour, cette hypothèse n’a pas été confirmée.Déterminer l’efficacité du vaccin à prévenir la maladieL’expérimentation tient une part fondamentale dans l’approche vaccinale, aussi « quelles que soient les connaissances acquises au laboratoire sur le pathogène et sur les mécanismes cellulaires mis en jeu, quelle que soit la technique utilisée pour mettre au point le vaccin et ses promesses au laboratoire, on ne saura jamais sa véritable efficacité tant qu’on ne l’aura pas testé sur l’être humain, commente Nathalie Davoust-Nataf. Il faut vacciner un grand nombre d’individus pour le savoir …»Avant qu’un vaccin puisse être mis sur le marché, il doit passer la phase cruciale des essais cliniques : ces derniers se déroulent en trois phases successives au cours desquelles des personnes, réparties dans des groupes de tailles croissantes (plusieurs dizaines de milliers pour la dernière phase), se font vacciner. Pendant ces essais, les cliniciens testent la bonne tolérance au vaccin (sa non toxicité), sa capacité à déclencher une réponse immunitaire efficace (par exemple la production d’anticorps), le dosage adéquat, le nombre de rappels éventuels, enfin, l’efficacité avec laquelle le vaccin prévient la maladie.virus du Sida (VIH) @FlickrPoliomyélite, rougeole, oreillons, fièvre jaune. Pour chacune de ces maladies infectieuses, invalidantes voire mortelles, il existe un vaccin. Pour d’autres, les recherches de solutions vaccinales semblent tourner court. « Si on prend l’exemple du HIV, force est de constater que l’effort de recherche énorme déployé depuis 30 ans pour mettre au point un vaccin préventif n’a pas abouti… pour l’instant, explique Hélène Dutartre. Toutes les technologies vaccinales connues ont été essayées, des combinaisons prometteuses tentées, mais la conclusion de chacun des essais vaccinaux s’est révélée négative. Nous en avons tiré des informations précieuses bien sûr, mais on semble avoir un temps de retard sur cette pathologie, à chaque fois ». Bien que n’ayant pas permis l’atteinte de son objectif premier, la recherche sur le vaccin HIV continue. Et s’il était besoin de remotiver les scientifiques arpentant ce domaine, les nombreuses retombées positives de leurs travaux, dans le cadre de la réponse à la Covid-19, sont autant de signes encourageants à persévérer.Dans le cas de la Covid-19, les chercheurs associés à l’industrie pharmaceutique ignoraient dans quelle mesure la stratégie de vaccin qu’ils poursuivaient allait aboutir. Le développement du premier candidat-vaccin anti-Covid de Sanofi Pasteur, à base de protéine recombinante, a été ainsi retardé en raison « d’une réponse immunitaire insuffisante observée chez les personnes de plus de 50 ans », a annoncé l’industriel en décembre 2020. Pour lutter contre la Covid-19, la quinzaine de vaccins ayant reçu une autorisation de mise sur le marché, au cours du premier semestre 2021 à l’échelle de la planète, reposent sur quatre technologies différentes : « C’est une chance inespérée d’avoir pu bénéficier aussi rapidement de plusieurs vaccins pour lutter contre le SARS-Cov-2. Dans notre communauté de chercheurs, passionnés par la question vaccinale, un doute subsistait : et si la course au vaccin n’aboutissait pas ? Pour notre bonheur, il en fut tout autre ! », concluent, souriantes, les deux scientifiques de Lyon.PPour aller plus loinVaccination Info ServiceDossier vaccins et vaccination de l’INSERMMédiation scolaire, scénario pédagogique visant à développer la notion de mémoire immunitaire au lycée, ressource ACCESS, juillet 2018Médiation scolaire, jeu « Info-intox » sur la vaccination, ressource ACCESS, octobre 2018Vaccins thérapeutiques et sida, état des lieux 2012, bulletin d’information thérapeutiques VIH n°70, printemps 2012Trois nouveaux candidats vaccins contre le VIH devraient faire l’objet d’essais cliniques d’ici la fin 2020 – Magazine Research*eu Nº 97 – NOVEMBRE 2020